

Baseline Positron Production and Capture Scheme for CLIC

Olivier Dadoun LAL, Orsay Université Paris Sud dadoun@lal.in2p3.fr

I. Chaikovska, P. Lepercq, F. Poirier, A. Variola (LAL, France), R. Chehab (IPNL, France) L. Rinolfi, A. Vivoli (CERN, Switzerland) V. Strakhovenko (BINP, Russia) C. Xu (LAL, France/IHEP, China)

26 May 2010 Kyoto, Japan

Foreword

Positron production requirements

- 1. High energy e⁻ beam
- 2. Radiator to produce γ : Amorphous, Undulator, Compton scattering, Crystal
- 3. Converter to produce e^+e^- pairs : material with high Z value (W)
 - Conventional scheme single thick target
 - Hybrid scheme crystal plus amorphous targets
- 4. Matching lens to focus the e⁺ beam

Outline

- CLIC positron complex
- Channelling effect from a crystal target
- Positrons production using an hybrid source Amorphous & Capture studies
- Conclusion

CLIC positron complex

Channelling effect from a crystal target

• A few GeV electron beam aligned to a <1 1 1> oriented crystal

Olivier Dadoun, IPAC2010

Hybrid source : CLIC positrons baseline

AMD effect on the positron beam

Positron yield & PEDD shape

Energy deposition studies

 Increasing the distance contributes to lower the PEDD P(kW)

PEDD & total power considerations

Selected parameters : 5 GeV, z=10 mm & d=2m

Average power $\approx 10 \text{ kW}$

→ PEDD \approx 22 J/g (60% of margin before breakdown)

e⁺ phase space at the exit of the Pre-Injector Linac

- Downstream the AMD Pre-Injector Linac
 - 2 GHz cavities
 - E=10 MV/m
- After 40 m
 - $\epsilon_{norm}(rms) \approx 7.4 \times 10^{-3} m \times rad$
 - 200 MeV

- Is this yield enough ?
- Recent studies request to increase by 25%-35% this yield
 - → Increase by 25%-35% the e⁻ intensity
 - → Average power : 12.5 13.5 kW
 - → PEDD : 28 30 J/g

Conclusion

- CLIC e⁺ production and capture baseline for 3 TeV
 - ✓ Positron yield
 - ✓ Average total deposition reasonable
 - ✓ PEDD below the maximum & still some margin
- Study in progress : hybrid solution for ILC
 - At the IP : 5 × the requested e+ for CLIC
 - Time structure modification (A. Variola)
- Further development
 - Continue the beam positrons transport studies : Injector, Pre Dumping Ring ...
 - 0.5 TeV CLIC option studies
 - Channelling effect implementation in Geant4