Project X: A Multi-MW Proton Source at Fermilab

111

Steve Holmes

International Particle Accelerator Conference Kyoto May 25, 2010

- Evolution of the Fermilab Complex
- Project X Goals and Initial Configuration(s)
- Project X R&D Program
- Relationships to other Programs
- Strategy

Project X website: http://www.fnal.gov/pub/projectx/

To Soudar

Strategic Context: Fermilab and the World Program

The Tevatron has now ceded the energy frontier to LHC

- Operations at 2 TeV will continue through September 2011
- Fermilab operates the highest power long baseline neutrino beam in the world.
 - J-PARC is initiating a competitive program

IPAC'10, Kyoto - S. Holmes

Fermilab is the sole remaining U.S. laboratory providing facilities in support of accelerator-based Elementary Particle Physics

⇒ The Fermilab strategy is to mount a world-leading program at the <u>intensity frontier</u>, while using this program as a bridge to an <u>energy frontier</u> facility beyond LHC in the longer term.

Evolution of the Fermilab Accelerator Complex

- A multi-MW Proton Source, Project X, is the linchpin of Fermilab's strategy for future development of the accelerator complex.
- Project X provides long term flexibility for achieving leadership on the intensity and energy frontiers
 - Intensity Frontier:
 - $NuMI \rightarrow NOvA \rightarrow LBNE/mu2e \rightarrow Project X \rightarrow Rare \ Processes \rightarrow NuFact$
 - Continuously evolving world leading program in neutrino and rare processes physics; opportunities for applications outside EPP
 - Energy Frontier:
 - $\text{Tevatron} \rightarrow \text{ILC or Muon Collider}$
 - Technology alignment
 - Fermilab as host site for ILC or MC

Design Criteria

- A neutrino beam for long baseline neutrino oscillation experiments
 - 2 MW proton source at 60-120 GeV
- High intensity, low energy protons for kaon and muon based precision experiments
 - <u>Operations simultaneous</u> with the neutrino program
- A path toward a muon source for a possible future Neutrino Factory and/or a Muon Collider

Requires upgrade potential to 2-4 MW <u>at ~5-15 GeV</u>.

Initial Configuration-1

ᅷ

Initial Configuration-1

- Strong alignment with ILC technologies
- Initial Configuration Document-1 V1.1 released March 2009

 Accompanying cost estimate ~\$1.5B

Initial Configuration - 1 Issues

- IC-1 does a great job of meeting the long baseline neutrino mission, but...
- does not provide a strong platform for mounting a low energy rare processes program
 - The Recycler is ill-suited to providing high intensity slow spilled beam
 - The Debuncher appears limited to <150 kW in this mode
 - ⇒ We believe there is a fundamental limit on the amount of beam power that can be delivered via a resonant extraction system
 - Difficulties supporting multiple users with differing spill structure requirements

\Rightarrow These considerations led to the development of IC-2

Accelerator Requirements: Rare Processes

Initial Configuration-2

- 3 GeV CW linac provides greatly enhanced rare process program
 - 2-3 MW; flexible provision for beam requirements supporting multiple users
- Options for 3-8 GeV acceleration: RCS or (1.3 GHz) pulsed linac
 - Linac would be 1300 MHz with 4-5 msec pulse length
- Initial Configuration Document-2 in preparation for spring release

Initial Configuration-2 Performance Goals

춖

Linac			
Particle Type	H-		
Beam Kinetic Energy	3.0	GeV	
Average Beam Current	1	mA	
Linac pulse rate	CW		
Beam Power	3000	KW	
Beam Power to 3 GeV program	2870	KW	
RCS/Pulsed Linac			
Particle Type	protons/H ⁻		\backslash
Beam Kinetic Energy	8.0	GeV	\backslash
Pulse rate	10	Hz	
Pulse Width	0.002/4.3	msec	
Cycles to MI	6		— simultaneous
Particles per cycle to MI	2.6×10 ¹³		Sindicancedo
Beam Power to 8 GeV program	200	kW	\rightarrow
Main Injector/Recycler			
Beam Kinetic Energy (maximum)	120	GeV	
Cycle time	1.4	sec	
Particles per cycle	1.6×10 ¹⁴		
Beam Power at 120 GeV	2200	kW	X

Initial Configuration-2 Operating Scenario

Initial Configuration-2 Provisional Siting

Project XR&D ProgramChoice of Cavity Parameters

- Identify maximum achievable surface (magnetic field) on basis of observed Q-slope "knee"
- Select cavity shape to maximize gradient (subject to physical constraints)
- Establish Q goal based on realistic extrapolation from current performance
 - Goal: <20 W/cavity
- Optimize within (G, Q, T) space

(Initial) Performance Goals

ILC:
$$\longrightarrow$$

1.3 GHz
Q₀=1.5·10¹⁰ @2K

Project XR&D ProgramChoice of Cavity Parameters

Integrated SRF Plan ILC + Project X

U.S. Fiscal Year	2008			F	Y09			F	ŕ10			F١	(11			F	Y12			F١	(13			F١	(14			F١	(15	
1.3 GHz																														
CM1 (Type III+)			СМ	Ass'y			li	nstall CM	(СМ Те	st																			
CM2 (Type III+)	Omni Dela	bus Iy		Р	roces	s & V	TS/I	Dress/H	тs	СМ	Ass'y	sw ap												Cor	Operat nplete	e RF				
СМЗ (Туре IV)			De	sign	Or	der C	av 8	& CM P	arts						2/3 CM									Unit Pa	@ De tramet	esign ers				
CM4 (Type IV)																			sw ap											
CM5 (Type IV)											-								sw ap											
CM6 (Type IV+) CW Design																Desi 1.3 G	gn CM iHz CW								Insta CN	all in 1TF				
NML Extension Building						Desig	ın	Con	structi	ion																				
NML Beam												Mov bear	e inje n com	ctor/i	nstall ents	l		Beam	Avai	lable (cont	to RF inger	Unit Unit	test ex n cryo	kcept ogeni	durin c loac	g ins I/capa	tallati acity)	on pe	riods	
CMTF Building								Desig	n	Cons	structi	on				ł														
650 MHz																														
Single Cell Design & Prototype																														
Five Cell Design & Prototype																														
СМ650_1												Des	sign		Ord	er 650 P	0 Cav arts	& CM	v	Proc TS/Dr	ess& ess/H	L ITS	650 As	CM s'y						
325 MHz																														
SSR0/SSR2 Design & Prototype								De	esign (RF & Sp	Mech oke R	anical eonat) all va ors	rieties	s of		Prot (as re	otype quired)	P	roces (as re	s & Te quirec	est d)							
SSR1 Cavities in Fabrication (14)								(alr	Procu eady i	remer n prog	nt ress)		P	roces	ss & V	TS/D	ress/H	TS												
CM325_1											Des	sign	1		Proc	ure 3	25 CN	l Parts	3	325 As	CM ss'y									

	Design	Procure	Process &	Assemble	Install	Commission	
			VTS			& Operate	
IPAC'10, Kyoto - S.	Holmes		Dress & HTS			•	Page 18

Integrated SRF Plan ILC + Project X

NML test facility: ILC and Project X R&D

IPAC'10, Kyoto - S. Holmes

- Project X shares many features with the proton driver required for a Neutrino Factory or Muon Collider
 - NF and MC require ~4 MW @ 10± 5 GeV
 - Primary issues are related to beam "format"
 - NF wants proton beam on target consolidated in a few bunches; Muon Collider requires single bunch
 - Project X linac is not capable of delivering this format

 \Rightarrow It is inevitable that a new ring(s) will be required to produce the correct beam format for targeting.

Collaboration Plan

- A multi-institutional collaboration has been established to execute the Project X RD&D Program.
 - Organized as a "national project with international participation".
 - Fermilab as lead laboratory
 - International participation via in-kind contributions, established through bi-lateral MOUs. (First MOU with India in place)
 - Collaboration MOU for the RD&D phase outlines basic goals, and the means of organizing and executing the work. Signatories:

ANL	ORNL/SNS	BARC/Mumbai
BNL	MSU	IUAC/Delhi
Cornell	TJNAF	RRCAT/Indore
Fermilab	SLAC	VECC/Kolkota
LBNL	ILC/ART	

 Collaborators to assume responsibility for components and sub-system design, development, cost estimating, and potentially construction.

Strategy/Timeline

- Next six months: Complete all preliminary design, configuration, and cost range information for IC-2
 - ICD-2v2.0
 - Cost estimate
- Continue conceptual development on outstanding technical questions
 - Baseline concept for the chopper
 - Concepts for marrying a 3-8 GeV pulsed linac to CW front end
 - Injection into RCS or Recycler
- Pursue R&D aimed at the CW linac
 - Emphasis of srf development at all relevant frequencies
 - Engage external collaborators and identify roles
- U.S. Department of Energy has advised that the earliest possible construction start is FY2015
- We believe that we could construct Project X over a five year time period, assuming a commensurate funding profile

\Rightarrow Project X could be up and running ~2020

- Project X is central to Fermilab's strategy for development of the accelerator complex over the coming decade
 - World leading programs in neutrinos and rare processes
 - Aligned with ILC and Muon Accelerators technology development;
 - Potential applications beyond elementary particle physics
- The design concept has evolved over the last year, providing significantly enhanced physics capabilities
- Current configuration:
 - >2 MW at 60-120 GeV, simultaneous with 3 MW at 3 GeV
 - Flexibility for supporting multiple experiments
 - CW linac is unique for this application, and offers capabilities that would be hard/impossible to duplicate in a synchrotron
- Project X could be constructed over the period ~2015 2019