

Pulse-to-pulse Beam Modulation and Event-based Beam Feedback System at KEKB Linac

K. Furukawa, M. Satoh, T. Suwada, T.T. Nakamura

KEK

< kazuro.Furukawa @ kek.jp >

May 25, 2010.

Pulse-to-pulse modulation and feedback

Kazuro Furukawa, KEK, May.2010.

1

KEK Electron Accelerator Complex

 Linac clients
 KEKB Asymmetric Collider HER 8-GeV e- 1nC x2 LER 3.5-GeV e+ 1nC x2 (with 10nC primary e-)
 PF 2.5-GeV e- 0.1nC
 PF-AR 3-GeV e- 0.2nC

Improvement efforts at Linac were carried in several steps

Contents

Past feedback loops at KEK linac

Simultaneous top-up injections

- Beam instrumentation
- Event-based closed feedback loops

Conclusion

Linac Beam Instabilities at Commissioning

Beam instabilities were observed at the beginning of commissioning (2000~2005)

Energy, orbit, energy spread, emittance, charge

Fluctuation source hunting

X Analysis by correlation, tolerance, single value decomposition, timedependent correlation, etc

X Many of them caused by simple failures of equipment, utility (temperature, power), or design deficiencies

But it took some time to fix... During that time,

Simple and slow beam feedback loops were effective

≍ Sometime, more sophisticated method like down-hill simplex was performed (that may hide the important defects)

Energy Stabilization

Energy instability was sometimes found

- Closed feedback loops
 were formed
- Beam positions were measured where dispersion function is large
- RF phases at adjacent stations were changed
- Loop parameters were beam mode dependent
- Energy spread feedback using multi-electrode monitor was also implemented

Simple Orbit Stabilization

If Orbit became unstable

- Beam positions were measured where betatron phases are
 90degree apart
- Corresponding steering magnets are adjusted
- If the orbit fluctuation was large, weighed average of BPMs based on response functions to beam kick or energy change
- The same method was applied to equipment stabilization

Simple Stabilization Examples

 7-min energy change, later attributed to air conditioner at the 1st high power source 40-min orbit change, later attributed to RF source for a buncher cavity

Kazuro Furukawa, KEK, May.2010. 8

Implementation and Results

- Those closed loops were implemented in a scripting computer language with graphical user interface
 - With separate activity management/monitor panel
 - As standard simple PI (Proportional-Integral) controller

Very effective during commissioning

- Instability sources were identified and fixed
 - Became unnecessary later during normal operation

Effective during beam study

- **X** With unusual and scanning beam condition
- Hz measurement at the beginning
 - 50Hz measurement was hoped

- Luminosity degradation on beam studies at PF and PF/AR
- Sensitive luminosity tuning with Crab cavities
- Future SuperKEKB injections with shorter lifetime
- PF top-up injection for higher quality experiments
- CERN/PS switches beams every 1.2s (PPM)
 SLAC/SLC switched beams at 180 Hz
 KEK Linac had switched beams 360 times a day in 2008 (just before simultaneous injection)
 - 10~120seconds per switching

Kazuro Furukawa, KEK, May.2010. 11

Event System Configuration

Linac Event System

Satisfies the requirements

- Event rate : 114.24MHz (bit rate : ~2.3GHz)
- Fiducial rate : 50Hz
- Timing jitter (Short term) : ~8ps
- ♦No. of defined events : ~50
- No. of receiver stations : 17
- ♦No. of Fast parameters : ~130

Beam Mode Pattern Generators

Pattern panel arbitrates requests

- From downstream rings with priorities, or human operators
- There are several pattern rules due to pulse device features and limitations
- Pattern arbitrator software was written in scripting languages to meet daily changes during the commissioning stage

Remote controlled automatic pattern arbitrator

	InjPattern-multi				
File	InjPattern-multi				v0.4
Priority	📕 base 50Hz 🔄 base 25Hz Update:				09/04/28 10:51:43
PF-A1 e-	KEKB e-	KEKB e+	PF(CT) e-	PF-A1 e-	AR e-
KEKB e+ KEKB e-	25 Hz 😑	0.000 Hz 😑	0.000 Hz 🖃	0.5 Hz 😑	0.000 Hz 😑
AR e- PF(CT) e-	Set	Set	Set	Set	Set
KEKB e- Study	12.500 Hz	25.000 Hz	0.000 Hz	0.500 Hz	0.000 Hz
KEKB e+ Study	12.500 Hz	25.000 Hz	0.000 Hz	0.500 Hz	0.000 Hz
PF(CT) e- Study	KEKB e- Study	KEKB e+ Study	PF(CT) e- Study	PF-A1 e- Study	AR e- Study
PF-A1 e- Study AR e- Study	0.000 Hz 😐	0.000 Hz 😑	0.000 Hz 🖃	0.000 Hz 😑	0.000 Hz 😑
	Set	Set	Set	Set	Set
1 100	0.000 Hz	0.000 Hz	0.000 Hz	0.000 Hz	0.000 Hz
Un Down	0.000 Hz	0.000 Hz	0.000 Hz	0.000 Hz	0.000 Hz
	Read ALL Se	et ALL "O Hz"			Set ALL
Ready.					

Recent typical operation.
 ×37Hz for KEKB LER
 ×-12.5Hz for KEKB HER
 ×-0.5Hz for PF

Manual pattern generator

Parameters

Parameters switched via event system

- LLRF phase/timing : 14x4
 - **¤Overall energy profile, dual-bunch energy equalization, final energy adjustment**
- ♦ HP RF timing : ~60
 - **Energy profile and backup management**
- Gun voltages, picosecond delay : 4
 - **¤** Beam charge selection, dual bunch selection, bunching
- Pulsed magnets/solenoid : 14
 - **Beam transport selection, orbit controls, positron focusing**
- Injection phase interface : 2
- Bucket selection interface : 2
- **♦BPM** : ~100x3

Sufficient for fast beam mode switching

Integrity monitors soon

Measurement and Data Acquisition

Originally much efforts to develop detectors, shaping amplifiers No budget for all BPMs Switched to direct waveform acquisition Minimized active components, then minimized calibration tasks, maintenance Equal-length cables One oscilloscope covers about 5 BPMs, or combined 20 (or 40) waveforms

- *5 10Gs/s (with additional interpolation)
- Possible to measure dual bunches
- Solved many issues at once!
- Extract each signal, apply calibration factors, send to upper layer at 50Hz

[A•min]

[Pa]

7000.0 [A•h]

BL04

BI 08

RI 12

.16

Simultaneous Top-up Injection Results

Time¹

BI 05

BL09

BI 13

Lifetime :

BL01 CLOSE

Beam Current: 449.9 [mA]

0.0

BL02

BI 06

RI 10

14

Beam currents are kept within KEKB 1mA (~0.05%) PF 0.05mA (~0.01%)

Pulse-to-pulse modulation and feedback

I* T :

∫ Idt:

BL03

BL 07

_15

[hours]

0.0

Vacuum : 2.1E-8

Combined Event-based Feedback Loops

- Simultaneous injections are managed by independent parameters for three virtual accelerators of KEKB-HER, KEKB-LER and PF
- On each of virtual accelerators, closed feedback loops for energies using the same procedure were installed
- As parameters are independently managed, no modification to the software was necessary

Kazuro Furukawa, KEK, May.201022

Results and Future

- No signs of instabilities up to now (other than white noise)
- No fast oscillation was observed with 50Hz measurement
- Event-based feedback loops may be useful during beam study, or when some equipment or utility became unstable
- Orbit feedback loops should be applied with pulsed steering magnets. Also energy-spread stabilization may be possible
- In the future SuperKEKB project, when new equipment will be installed, event-based feedback loops should be necessary
- Fast processing implemented in a compiler language is under development

Conclusion

Closed beam feedback loops for beam characteristics were useful under certain condition

Pulse-to-pulse modulated simultaneous injection improved the experiment performance

Event-based feedback loops were implemented

Feedback system will be necessary in the future project with additional equipment

Acknowledgement: Event-based controls was not possible without help from EPICS community. Thanks to them all over the world.

Thank you