International Design Study of a Neutrino Factory

J. Scott Berg Brookhaven National Laboratory IPAC 2010 27 May 2010

Neutrino Physics

- Neutrinos have mass
- Mass and flavor eigenstates different
- \circ Mixing matrix angles θ_{12} , θ_{23} , θ_{13}
 - $\Box \theta_{13}$ possibly zero, θ_{23} near 45°
- CP-violating phase δ (irrelevant if θ_{13} zero)
- Squared mass differences

$$\Box |\Delta m_{21}^2| \ll |\Delta m_{31}^2|$$

$$\Box \operatorname{Sign} \text{ of } \Delta m_{31}^2 \text{ unknown}$$

Neutrino Properties

Long Baseline Neutrino Experiments

Accelerator: make neutrinos in flavor eigenstate
 Mixture of mass eigenstates

- Neutrinos propagate to far detector
 - Each mass eigenstate has different phase advance
 - Phase advance: square of mass
- Detector: detect flavor eigenstate • Detect corresponding lepton (e, μ)

Neutrino Factory Goals

- OCreate high-energy muon beam
- Decay in ring, directed through earth to far detector
- Well-defined spectrum from muon decay
 - □ μ^- creates ν_μ and $\bar{\nu}_e$ □ Distinguish by sign of detected leptons ◇ Need magnetized detector

Neutrino Factory vs. Superbeams

SPL

T2HK

WBB

NF BB

 ○ Get results for smallest θ_{13} Better precision for mixing parameters Especially interesting if

nearly

symmetric

0.8 ⁻raction of δ_{CP} 0.6 0.4 0.2 GLoBES 2006 0 10⁻³ 10^{-4} 10⁻² 10^{-5} 10^{-1} True value of $\sin^2 2\theta_{13}$

Neutrino Factory Accelerator Complex

- High-power proton driver, protons hit
- Target, producing pions decaying to muons
- Front end, reshapes and intensifies beam
- Acceleration, increase energy to 25 GeV
- Decay ring, neutrinos produced decay toward far detectors

Neutrino Factory Accelerator Complex

International Design Study

Goal: reference design report by end 2012
 Basis for request to start project
 Costs at 30% level

Interim design report by end 2010
 Move from design to engineering
 Designs for all systems
 Cost estimates at 50% level
 Focus on baseline: one design!

Baseline Parameters

25 GeV muon beam, both signs
Detectors at two distances

3000–5000 km
7000–8000 km

5 × 10²⁰ muon decays per year per baseline
Muon beam divergence of 0.1/γ

High-Power Proton Driver

Supply protons to target to produce pions

- Basic specifications:
 - □4 MW proton beam power
 - Proton kinetic energy 5-15 GeV
 - □ RMS bunch length 1–3 ns
 - □ 50 Hz repetition rate
 - \Box Three bunches, extracted up to 80 μ s apart

Muon Capture vs. Proton Energy

Muon Capture vs. Proton Bunch Length

Proton Bunch Structure

Proton Driver Plans

- Will be upgrade to existing facility
- Important to understand contribution to cost of neutrino factory
- Individual laboratories will contribute
 - Plan to upgrade to neutrino factory requirements
 - Corresponding cost estimate

Target

- Baseline is liquid mercury jet
 - Avoid target damage
- Target in 20 T field: pion capture
- Demonstrated in MERIT experiment
 - Proton beam pulses comparable to neutrino factory
 - Two bunches in rapid succession: no loss in production for second with spacing 350 µs or less

17

Mercury Jet Target Station

Target Plans

- Engineering of target station and components
 Jet nozzle: improve jet quality
- Ensure sufficient shielding of superconducting magnets
- Fluid dynamics/engineering of Hg pool
 Acts as beam dump
 Return Hg to loop

Mercury Pool Dynamics

Front End

 Pions (thus muons) start with large energy spread: reduce

"Neuffer" phase rotation

- Uses high-frequency RF
- Does both signs
- Create 200 MHz bunch train

Reduce transverse beam size
 Ionization cooling

Neutrino Fac

Pion Spectrum

Phase Rotation

RF in Magnetic Field

- RF cavities in magnetic field
 - Large angular and energy acceptances
- Experiments: gradient reduced in magnetic field
- Don't have complete picture yet
- Ongoing experiments
 - Change magnetic field orientation w.r.t. surface
 - Gas-filled RF cavities
 - Test different surface materials

Ionization Cooling Lattice

Gradient vs. Magnetic Field

Mitigation Strategies

Reduce fields on cavities
 Increase distance to magnets
 Add bucking coils
 Add shielding to solenoids
 Magnetically insulated lattice: high-*E* field surfaces parallel to *B*

- Make cavity from beryllium
- Fill cavities with pressurized hydrogen gas

Front End Plan

- Mitigation often reduces performance
- Operation limits of cavities still unknown
- Baseline: choose technically optimal design
 Earlier "Study IIa" lattice
 Improved Neuffer phase rotation
- One alternative to understand penalty/cost of mitigation

Acceleration

- Efficiency: maximize passes through RF
 Four stages to get good efficiency
 Linac to 0.9 GeV
 Two RLAs: to 3.6 GeV and 12.6 GeV (4.5 passes)
 FFAG to 25 GeV (11 passes)
- ○Use 200 MHz SCRF

Acceleration

Acceleration Linac and RLAs

Lattices completely defined
 More detailed magnet designs
 Tracking beginning with soft ends

Acceleration FFAG

- Many passes (11): no switchyard
- OInjection/extraction challenging
 - IS cm radius, 0.09 T field, 7 needed, 546 m ring circumference
- Selected triplet lattice with long drifts
 - Longer drifts ease injection/extraction
 Double cavity in long drift: better gradient
 Reduce longitudinal distortion: large transverse amplitude

Acceleration FFAG

Add some chromaticity correction
 Modest amount: hurts dynamic aperture
 Helps longitudinal distortion
 Design kicker systems (magnet, power supply)
 Study lattice dynamics in EMMA experiment

Decay Ring

- Long straights to maximize decays to detector
- High beta functions in straight: reduce divergence
 - Less divergence, less flux uncertainty for given divergence uncertainty
- Excellent dynamic aperture

Decay Ring Dynamic Aperture

Decay Ring Diagnostics

- Reduce flux spectrum uncertainty
- Polarimeter: measure decay electron spectrum
 - Neutrino flux depends on polarization
 - Detector transverse to beam, in matching section following weak bend
- In-beam He gas Cerenkov: beam divergence
 - Emittance growth: verify if acceptable

Decay Ring Polarimeter

Low-Energy Neutrino Factory

- Same as above but stopping acceleration earlier, different decay ring
- \odot Competitive with high energy (and best superbeams) if θ_{13} large
- Interesting as part of staging
 - Start with low energy
 - Upgrade to high energy or larger detector depending on physics results
- Will be described in design reports

Conclusions

- Neutrino factory: precision measurements of neutrino mixing
- Well-defined scenario, lattices almost complete
- Ocontinuing important R&D
 - RF cavities in magnetic fields
 - In MICE cooling experiment
 - EMMA: FFAG dynamics
- Starting engineering of components

