

Suppression of Transverse Instabilities by Chromaticity Modulation

T. Nakamura, K. Kumagai^{*,2}, H.Ohkuma, N. Kumagai¹, T. Ohshima¹, S. Matsui¹, & H. Takebe¹

SPring-8, JASRI; *RIKEN

A. Ando³, Y. Shoji, & S. Hashimoto

NewSUBARU, LASTI, University of Hyogo

Present address
1 *RIKEN Harima*2 *Nishina Centre, RIKEN*3 *J-PARC, KEK*

Suppose that particles in a bunch have tune variation (spread).

After many revolutions, they oscillate with different phases.

Then the oscillation amplitude of the average (coherent osci.) becomes smaller.

Suppose that particles in a bunch have tune variation (spread).

After many revolutions, they oscillate with different phases.

Then the oscillation amplitude of the average (coherent osci.) becomes smaller.

Suppose that particles in a bunch have tune variation (spread).

After many revolutions, they oscillate with different phases.

Then the oscillation amplitude of the average (coherent osci.) becomes smaller.

It suppresses the growth of the oscillation.

 \rightarrow suppression of any transverse instability

Betatron tune shift with chromaticity $\Delta v = \xi_0 \delta$

With synchrotron oscillation

$$\delta = \delta_0 \cos \omega_S t + (\omega_S / \alpha_P) \tau_0 \sin \omega_S t$$

Averaged tune shift over T_S

$$\left\langle \Delta \nu \right\rangle_{T_{S}} = \left\langle \xi_{0} \delta \right\rangle_{T_{S}} = 0$$

Betatron tune shift with chromaticity $\Delta v = \xi_0 \delta$

With synchrotron oscillation

$$\delta = \delta_0 \cos \omega_S t + (\omega_S / \alpha_P) \tau_0 \sin \omega_S t$$

Averaged tune shift over T_S

 $\left\langle \Delta \nu \right\rangle_{T_s} = \left\langle \xi_0 \delta \right\rangle_{T_s} = 0$

 $T_S = 0.2 \text{ ms}$ time (ms)

Chromaticity modulation

 $\Delta v = (\xi_0 + \xi_1 \cos \omega_s t) \delta$

With synchrotron oscillation

 $\delta = \delta_0 \cos \omega_S t + (\omega_S / \alpha_P) \tau_0 \sin \omega_S t$

Averaged tune shift over T_S

$$\left\langle \Delta \nu \right\rangle_{T_S} = \left\langle \xi \delta \right\rangle_{T_S} = \frac{1}{2} \xi_1 \delta_0$$

Chromaticity modulation

With synchrotron oscillation

Averaged tune shift over T_S

 $\Delta v = \left(\xi_0 + \xi_1 \cos \omega_s t\right) \delta$

 $\delta = \delta_0 \cos \omega_S t + (\omega_S / \alpha_P) \tau_0 \sin \omega_S t$

$$\left\langle \Delta \nu \right\rangle_{T_{S}} = \left\langle \xi \delta \right\rangle_{T_{S}} = \frac{1}{2} \xi_{1} \delta_{0}$$

 $\sigma_v = \frac{1}{2} \xi_1 \sigma_\delta$ tune spread

Landau damping time (for Gaussian)

$$\frac{1}{\tau_L} = \sqrt{\frac{2}{\pi}} \omega_0 \frac{1}{2} \xi_1 \sigma_\delta$$

1995 T. Nakamura 1997 W. Cheng *et al*.

2005 V.H. Ranjbar 2006 Nakamura *et al*. The first proposal(PAC'95)Theoretical analysis on single bunch instability
(PRL78 & PR-E56)Report on the first try(PAC'05)Preliminary report on the first success
(Annual Meeting of Particle Acc. Soc. of Japan)

This is the first English report about the success of the instability suppression.

NewSUBARU

1.0 - 1.5GeV electron storage ring(Top-up operation at 1GeV; energy during the experiment)One AC sextupole magnet was installed for the experiment.

Lab. Tour at the end of IPAC'10

NewSUBARU

Non-achromatic lattice (Y. Shoji, 2005 Ann. Meeting of PASJ)

Electron energy	1 GeV
Dispersion at AC6	0.73 m
Beta func. at AC6	17/13 m
Betatron tune	6.2, 2.2
DC chromaticity	33
Synch. osc. frequency	5 kHz
Natural energy spread	0.047%
Rad. damping time	22 ms

AC Sextupole Magnet

AC Sextupole magnet system (*T. Nakamura, K. Kumagai, Y. Shoji, T. Ohshima, ...*

MT-20, 2007)

Pole length0.15mBore diameter80 mmYoke material0.35 mYoke material0.35 mCoil turn1 turn/Operation frequency4 - 6 kDrive current $300A \mu$ Field strength36 T/mModulation amplitude ξ_1 1.63/1Damping time0.21/0(Synchrotron osci. period0.2ms)

0.15m 80 mm 0.35 mm Si steel 1 turn/pole 4 – 6 kHz 300A peak 36 T/m² 1.63/1.25 0.21/0.27 ms 0.2ms)

Experiment

(1) Damping of coherent betatron oscillation amplitude

- (2) Suppression of multi-bunch instability due to the cavity HOM
- (3) Improvement of maximum single bunch current
 - = suppression of mode coupling instability

What we adjusted the parameters before the experiment.

- (a) Beam position (setting accuracy < 0.5mm)
 - \rightarrow minimize beam oscillation driven by AC6 (induced osc. $\Delta \varepsilon$ <1 pm rad.)
- (b) Modulation frequency (setting accuracy < 50 Hz)

 \rightarrow maximize the suppression effect

The modulation frequency should be the incoherent synchrotron frequency.

Coherent Oscillation Damping

Coherent Oscillation Damping

Measurement of the beam response

Multi-bunch Instability

Move RF tuner, then cavity HOM frequency to a resonant point. (horizontal TM110; 792 MHz)

Excite AC6 and suppress the instability.

 $\xi_{0x} = 1.1$ $\xi_{1x} = 1.0 \ (\tau_L = 0.36 \text{ms})$ ON/OFF

saw teeth period ~ 20ms

Multi-bunch Instability

SPring 8

Single bunch instability (vertical mode coupling) The oscillation modes shifted with the beam current.

Suppression of the mode coupling instability → Enlarge the maximum bunch current

Suppression of the mode coupling instability→ Enlarge the maximum bunch current

Suppression of the mode coupling instability → Enlarge the maximum bunch current

Comparison with Other Methods

Methods of instability suppression

Method	Landau damping	Bunch-by-bunch feedback
Tuning	easy	needs precise timing adjustment, Hadron ring impossible when f_0 changes with energy Electron ring difficult gain adjustment with different current bunches.
Instability	any transverse	works only for center of mass movement
Damping power	weak	strong

Comparison with Other Methods

Magnets for Landau damping

Magnet	AC sextupole	Octupole
Tune shift	$\frac{\text{chromatic}}{\Delta v \propto \delta}$	amplitude dependent $\Delta v \propto x^2$
Dynamic aperture	better	worse
Magnet strength	AC magnet with ceramic duct weaker than DC sextupoles	DC magnet strong esp. at low ε ring

SUMMARY

We showed the first experimental demonstration on the suppression of transverse beam instabilities by means of the chromaticity modulation.

The multi-bunch instability (horizontal HOM) was suppressed. The single bunch instability (vertical MCI) was suppressed.

This work was supported by the Grant-in-Aid for Scientific Research from Ministry of Education, Science, Sorts and Culture Government of Japan, kiban(B) 16360043 .