

Results from the 2009 Beam Commissioning of the CERN Multi-Turn Extraction

E. Benedetto, A. Blas, T. Bohl, S. Cettour Cave, K. Cornelis, D. Cotte, H. Damerau, M. Delrieux, J. Fleuret, T. Fowler, F. Follin, A. Franchi, P. Freyermuth, H. Genoud, S. Gilardoni, M. Giovannozzi, S. Hancock, O. Hans, Y. Le Borgne, D. Manglunki, E. Matli, E. Métral, G. Métral, M. Newman, L. Pereira, F. Peters, Y. Riva, F. Roncarolo, L. Sermeus, R. Steerenberg, B. Vandorpe, J. Wenninger

Summary:

New multi-turn extraction (MTE)

Commissioning results 2009/10

Massimo Giovannozzi

1

the horizontal phase space using

- Nonlinear magnetic elements (sextupoles ad octupoles) to create stable islands.
- Slow (adiabatic) horizontal tune variation to cross an appropriate resonance.

•CERN-specific requirements

- Extraction over five turns -> 4th order resonance
- Equally populated turns -> (20±1)%

IPAC'10 - May 27th 2010

2

Final stage after 20000 turns (about 42 ms for CERN PS)

Massimo Giovannozzi

Final stage after 20000 turns (about 42 ms for CERN PS)

About 6 cm in physical space

Massimo Giovannozzi

Final stage after 20000 turns (about 42 ms for CERN PS)

About 6 cm in physical space

Massimo Giovannozzi

Final stage after 20000 turns (about 42 ms for CERN PS)

About 6 cm in physical space

Massimo Giovannozzi

Final stage after 20000 turns (about 42 ms for CERN PS)

About 6 cm in physical space

Massimo Giovannozzi

Final stage after 20000 turns (about 42 ms for CERN PS)

About 6 cm in physical space

Massimo Giovannozzi

Final stage after 20000 turns (about 42 ms for CERN PS)

About 6 cm in physical space

Massimo Giovannozzi

The predecessor of MTE: Continuous Transfer (CT)

Implementation of MTE

CERN PS MULTI

0 TURN

EXTRACTION

Transverse dynamics - I

Sextupoles and octupoles are used to •Generate stable islands •Control size/position of islands •Control linear chromaticity •Control non-linear coupling (using an additional set of octupoles, normally used to combat instabilities)

$$\delta Q_{x} = h_{2,0} J_{x} + h_{1,1} J_{y}$$

$$\delta Q_{y} = h_{1,1} J_{x} + h_{0,2} J_{y}$$

 $h_{2,0} \rightarrow detuning with amplitude (H-plane) \rightarrow \propto \beta_x^2 K_3$ $h_{1,1} \rightarrow non-linear coupling \rightarrow \propto \beta_x \beta_y K_3$ $h_{0,2} \rightarrow detuning with amplitude (V-plane) \rightarrow \propto \beta_y^2 K_3$

Massimo Giovannozzi

Transverse dynamics – III

CERN PS MULTI

TURN EXTRACTION

Transverse dynamics - IV

CERN PS MULT

TURN

EXTRACTION

 To achieve good sharing of beam intensity between islands and core various parameters optimised (h_{1,1} is rather crucial).

Fraction of particles trapped in islands (%)

Evolution of beam distribution

Horizontal beam profiles in section 54 have been taken during the capture process (total intensity ~2.1×10¹³).

Evolution of beam distribution

Horizontal beam profiles in section 54 have been taken during the capture process (total intensity ~2.1×10¹³).

Extraction efficiency

Regular fluctuations in the extraction efficiency are also observed and seem well correlated to spill fluctuations.

Extraction efficiency (%)

Distribution of extraction efficiency is peaked at about 98% (NB: the beam is debunched at extraction! Unavoidable beam losses are estimated at about 1-2%)

CT vs. MTE: extraction losses

- For the same extracted intensity, the CT features more losses, about the double, compared to MTE.
- The CT losses are spread around the ring whereas for MTE the losses are more concentrated on the extraction septum as anticipated in the MTE Design Report.

Massimo Giovannozzi

MTE performance in SPS

- 2009: the MTE beam was delivered to SPS as of mid-September. Total intensity delivered was about 3×10¹⁷ p
- 2010: commissioning activities started as of February. Physics run started with MTE beam instead of CT.
- Lower trapping in islands generates beam loading in the cavities, thus limiting the performance of the SPS.

IP/

Massimo Giovannozzi

CNGS Larger Former teletext 111	. U	ser: CNGS2	01-M Last	May–2010 10:56:24 update: 1 secs ago
TT2	TT10	%LOSS	INJ	%LOSS
2248	2167	3.6	2035	6.1
2160	2082	3.6	1997	4.1
High intensity beam: peak performance				
	I/E10	%LOSS	%TRNS	TIME/ms
INJECT	3985	5.1	95	1210
END_FB	3950	2.0	98	1260
20 GeV/c	3834	2.9	95	1470
27 GeV/c	3782	1.4	94	1530
50 GeV/c	3752	0.8	93	1740
400 GeV/c	3743	0.3	93	4200
SC: 28750		LOSS @ FB	: 2.3%	

Outlook

- First MTE beam delivered to the SPS by mid-September 2009 (about 1.5×10¹³ p/extraction).
- Equal sharing between islands and core achieved by the end of 2009.
- In February 2010 the commissioning was resumed.
- High intensity beam was extracted (about 2.1×10¹³ p/extraction) with record intensity 2.6×10¹³ p/extraction.
- 2010 physics run at SPS was started using MTE beam.

• Open issues:

- Periodic variation of the fraction of particles trapped in islands.
- Activation of extraction septum due to the extraction losses related to the longitudinal structure of the extracted beam (de-bunched as needed by the SPS).

Acknowledgments

- G. Arduini, M. Chanel, K. Hanke, R. Louwerse, J. Tuckmantel, U. Wehrle
- PS-Booster, PS, and SPS operations crew and machine supervisors.
- Beam instrumentation, power converter, kicker experts.
- Radioprotection experts.