

Design and Test of the 1st Nb₃Sn Long Quadrupole by LARP Giorgio Ambrosio

Fermilab

Acknowledgement: many people contributed to this work, most of all the Long Quadrupole Task Leaders: *Fred Nobrega (FNAL)* – Coils *Jesse Schmalzle (BNL)* – Coils *Paolo Ferracin (LBNL)* – Structure *Helene Felice (LBNL)* – Instrumentation and QP *Guram Chlachidize (FNAL)* – Test preparation and test

The 1st International Particle Accelerator Conference Kyoto, Japan / May 23-28, 2010

Post NbTi Candidates

 $V_3 Si(S=1)$

Intrinsic axial strain [%]

1.0

0.5

1.5

0.0

0.4

R. Flukiger et al.,

-0.5

- Development started in the '60s ...
- But it is brittle and strain sensitive!

" The US LHC Accelerator Research Program enables U.S. accelerator specialists to <u>take an active and important role in the</u> <u>LHC</u> accelerator during its <u>commissioning and operations</u>, and to be a major collaborator in LHC <u>performance upgrades (...)</u>" (mission statement)

• Magnet R&D (FNAL, BNL, LBNL) Goal:

Demonstrate that Nb₃Sn is a viable option for LHC Luminosity Upgrade

→ 2005 milestone by DOE, CERN, LARP:

- 90 mm aperture, 4 m long Quadrupole
- Gradient = 200 T/m
- by the end of 2009

LARP R&D plan[†]

Long Quadrupole[†]

Main Features:

- Aperture: 90 mm
- magnet length: 3.7 m
- **Target:**
- **Gradient:** 200+ T/m

Goal:

- Demonstrate Nb₃Sn magnet scale up:
 - Long shell-type coils
 - Long shell-based structure (bladder & keys)

LQS01 was tested in Nov-Dec 2009 LQS01b test start in June

	LQS01 SSL	4.3 K
1	Current	13.9 kA
	Gradient	242 T/m
	Peak Field	12.4 T
	Stored Energy	473 kJ/m

[†]LQ Design Report available online at: https://plone4.fnal.gov/P1/USLARP/MagnetRD/longquad/LQ_DR.pdf

[†] P. Ferracin et al. "Assembly and Loading of LQS01, a Shell-Based 3.7 m Long Quadrupole Magnet for LARP" to be published in *IEEE Trans. on Applied Superconductivity*.

2 3

4 5

6

7

8 9 10

• Coil design:

 LQ coils = long TQ02 coils with gaps to accommodate different CTE during HT

• Fabrication technology:

- From 2-in-1 (TQ coils) to single coil fixtures (LQ)
- Mica during heat treatment
- Bridge between lead-end saddle and pole

LQ Coil Fabrication:

- 5 practice coils (Cu and Nb₃Sn)
- coils #6-#9 → LQS01
- coils #10-#13 → LQS02

Note: coils #6-#9 had 3 severe discrepancies

[†]G. Ambrosio et al. "Final Development and Test Preparation of the First 3.7 m Long Nb3Sn Quadrupole by LARP" to be published in *IEEE Trans. on Applied Superconductivity.*

Pre-load

- Target stress on shell
- Target stress on roads
- Lower stress on coils ID

Cooldown

- Shell: close to target stress
- Rods: close to target stress
- Coil ID: ~ $\frac{1}{2}$ target stress

Azimuthal stress (MPa) in the coil poles during cool-down: values measured (colored markers)

and computed (black markers) from a 3D finite element model

Coil-Pad Mismatch

- **FEM model with azimuthally** oversized coils (120 µm)
 - \rightarrow bending due to coil-pad mismatch
 - \rightarrow Lower stress in the pole

Consistent w measurement

→ Higher stress on midplane Risk of damage above 200 T/m

Verified during disassembly

Tested with pressure sensitive paper

Displ. scaling: 50

LQS01 Quench History

• Slow start

- First quenches at high ramp rate (200 A/s)
 - Trying to avoid QPS trips due to voltage spikes
- Slow training at 4.5K
 - Due to low pre-load on pole turns
- Faster training at 3 K
 - Reached 200 T/m
- Stopped training
 - to avoid coil damage before reassembly

Test report available online at: https://plone4.fnal.gov/P1/USLARP/MagnetRD/longquad/report/TD-10-001_LQS01_test_summary.pdf

G. Ambrosio - Design and Test of the First Long Nb3Sn Quadrupole by LARP

LQS01 Quench History

• Slow start

- First quenches at high ramp rate (200 A/s)
 - Trying to avoid QPS trips due to voltage spikes
- Slow training at 4.5K
 - Due to low pre-load on pole turns
- Faster training at 3 K
 - Reached 200 T/m
- Stopped training
 - to avoid coil damage before reassembly

Test report available online at: https://plone4.fnal.gov/P1/USLARP/MagnetRD/longquad/report/TD-10-001_LQS01_test_summary.pdf

G. Ambrosio - Design and Test of the First Long Nb3Sn Quadrupole by LARP

Voltage Spikes

- Large voltage spikes
 - Due to flux jumps
 - Seen in TQ magnets using RRP 54/61
 - Larger than in TQs
 - → Variable quench detection threshold
 - ➔ Variable ramp-rate during training
 - 200 A/s → 3 kA
 - 50 A/s → 5 kA
 - 20 A/s → 9 kA
 - 10 A/s \rightarrow quench

• Magnetic measurement at 4.5K:

- Harmonics:
 - Some are a few units differenf wrt computed
 - Similar to short models (TQ)[†]
 - A few harmonics, slightly worse, may have been affected by assembly
- Dynamic effects
 - No decay and snapback

• Will repeat and expand on LQS01b

[†]G. Velev, et al., "Field Quality Measurements and Analysis of the LARP Technology Quafrupole Models", IEEE Trans. On Applied Supercond., vol.18, no.2, pp.184-187, June 2008

	#	100 T/m		179 T/m	
		(5.3 kA)		(10 kA)	
		Computed	Measured	Computed	Measured
	b_3		<mark>2.29</mark>		<mark>2.61</mark>
	b_4		<mark>6.73</mark>		<mark>6.93</mark>
	b_5		0.17		-0.08
	b_6	9.8	9.89	6.1	<mark>7.47</mark>
	b_7		-0.06		-0.11
	b_8		-0.98		-0.38
	b_9		0.19		0.13
	b_10	-0.04	0.35	-0.02	-0.47
	a_3		<mark>2.28</mark>		<mark>2.28</mark>
	a_4		<mark>1.94</mark>		<mark>2.11</mark>
	a_5		-0.51		-0.65
	a_6		-0.12		-0.29
	a_7		0.29		0.14
	a_8		0.08		0.06
	a_9		<mark>-1.09</mark>		-0.16
	a_10		0.37		0.12

Geometrical harmonics at 100 and 179 T/m field gradient. Results are presented at 22.5 mm reference radius, *which corresponds to the official radius adopted for LHC (17 mm) corrected for the increase in the magnet aperture from 70 to 90 mm.*

An 81.8 cm long tangential probe was used.

- New shims give correct ratio between strain in the shell and strain in the coils (same coils of LQS01)

 More uniform prestress.
- Higher preload based on short models (TQS03 a/b/c)
 Peak load: 190 MPa +/- 30

- Some "bubbles" on coils inner layer
 - Coil-insulation separation
- Possible causes:
 - Superfluid helium and heat during quench
 - Seen in TQ coils
 - Heat from heaters on inner layer
 - Only in LQ coils
- Plans:
 - Strengthen insulation or
 - Change heater location

- LQS01b with LQS01 coils
 - GOAL: reproduce TQS02 performance
 - Check uniform preload with new shims
 - Check effects of higher pre-load
- LOS02 with 4 new coils (54/61 strand)
 - GOAL: better training and memory
 - Gradient > 200 T/m with short training
 - Effect of thermal cycle (memory)
- LQS03 with 4 new coils (108/127 strand) and **new cable insulation (glass tape)**
 - GOAL: accelerator-quality conductor & insulation
 - Smaller Voltage Spikes
 - Better 1.9 K performance

Plus additional reassemblies based on results

IPAC10 - Kyoto, May 26-28, 2010

G. Ambrosio - Design and Test of the First Long Nb3

November 2010

June 2011

- The first Nb₃Sn Long Quadrupole (LQS01) reached the 200 T/m target
 Are No.
 - Even if training was not completed
 - Even if coils and assembly had some issues
- Next LQ models aim at:
 - Achieving same performance of short models
 - Demonstrating short training & good memory
 - Demonstrating accelerator-quality conductor and cable insulation
- Need still some R&D:
 - Protection heaters for inner layer

Are Nb3Sn magnets ready for use in Particle Accelerators?

Not yet... but we are MUCH closer!