
PROTOTYPE OF BEAM COMMISSIONING ENVIRONMENT AND ITS
APPLICATIONS FOR NSLS-II*

G. Shen#, L. Yang, BNL, Upton, NY 11973, U.S.A.
M. Kraimer, ANL, Argonne, IL 60439, U.S.A.

Abstract
A software framework for commissioning the NSLS-II

storage ring beam is in development. It adopts a
client/server model, and consists of various servers for
data acquisition, communication and management. Based
on this structure, physics applications can be developed to
satisfy the requirements of both day-1 beam
commissioning and future beam study. This paper
describes the status of the infrastructure development and
its applications.

INTRODUCTION
NSLS-II (National Synchrotron Light Source II) is a 3rd

generation synchrotron light source which is currently
under construction [1]. It consists of a 200MeV linear
accelerator, a 3 GeV booster, and a 3 GeV storage ring.
Although based on well known techniques, its design has
several novel features. For example, it uses DWs
(Damping Wigglers) to reduce horizontal emittance and
thus provide high flux X-rays. The design goals present
some challenging control issues especially non-linear
dynamics related issues [2] such as control of the
Touschek lifetime and momentum aperture, control of
tune footprint, control of impact of DWs and IDs
(Insertion Device) including leading order nonlinear
effects from DWs in the DA (Dynamic Aperture)
optimizations, control of high order chromaticity, and so
on. All such issues were addressed during the theoretical
lattice design, but now the challenge is to provide a
convenient and flexible software framework to address
these issues during beam commissioning.

The high level applications developed by accelerator
physicists should be able to achieve their goals by
focusing on algorithms while being released from tedious
data acquisition and manipulation issues. This is the
design strategy for the software architecture. With a clean
and carefully designed interface, collaborators, who have
different areas of expertise such as GUI design, numerical
analysis, accelerator physics, data acquisition, hardware
control, and so on, can work together effectively and
productively.

Many existing software frameworks, for beam
commissioning, are available in our community but each
exchanges data between layers via in-memory data
structures, files, or methods. None of them can easily
share data with others or directly include any portions of
the other frameworks. For example, beam behaviour can

be predicated by feeding a realistic on-line model to a
simulation code. A method known as model based control
can control beam behaviour effectively and dynamically
by comparing real beam status with the predication. A
traditional application interfaces directly to its build-in
simulation code to predicate behaviour, and can only
communicate with its build-in code. However, it is not
sufficient to use one simulation code to solve all
problems.

 There have been many discussions about how to solve
the problem of sharing code. Some frameworks such as
MML [8] (Matlab Middle Layer) provide a set of APIs
which makes it easier to development new high level
applications. However, these APIs are not well-defined,
or widely to use. For the NSLS-II project, a use case
approach is being studied [3]. Instead of a traditional
monolithic approach, a client-server based architecture
has been designed and prototyped. The software
environment for physics applications is based on EPICS,
which is used for our hardware control [4]. Detailed
design can be found in [5, 6], and the architecture is
shown as Fig. 1.

Figure 1: Architecture of Client/server based HLA.

Briefly, the system consists of: (1) the data source
layer, which can be low level hardware control system, or
a relational database; (2) a service layer, which provides
services to gather data from the data source layer, and
perform data manipulations such as constructing an orbit
using BPM data; (3) the presentation layer, which present
machine status to operators, and provides an interface for
machine control

At NSLS-II, the following services have been
prototyped: an on-line model service [7], a directory
service, and a gather service. This paper discusses the
high level application requirements for NSLS-II,
describes the implementation of the directory and gather
services, shows system integration with a use case, and
gives a summary.

*Work performed under auspices of the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886 with Brookhaven Science
Associates, LLC.
#shengb@bnl.gov

WEPEB026 Proceedings of IPAC’10, Kyoto, Japan

2740

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

SOFTWARE REQUIREMENTS
The high level applications must satisfy all the

requirements for beam commissioning and tuning. The
applications are mainly involved with accelerator physics,
mechanics, magnets, and vacuum. The required
applications for the use case approach have been listed in
[3].

The high level control environment can be separated to
two parts: (1) a set of standalone applications whose
algorithms are mature and can be used in daily operation;
(2) an interactive environment which is suitable for
scripting and for prototyping algorithms. A set of well-
defined APIs, like but more clearly defined than MML, is
required to support both the standalone applications and
the interactive environment. The APIs must allow users to
make full use of the functionality and APIs provided by
lower level servers/libraries. Conceptually, a high level
application would have the following layers: (1) Client
APIs provide functions with physics meaning, such as
“measureChromaticity”, “rampMagnet”, etc.. The API
operates on element names, e.g. SL1, instead of the long
EPICS channel names; (2) Server APIs are used to
implement client APIs. Anything at this level or below is
hidden from accelerator physicists who are only interested
in “operating on beam” instead of “operating on
magnets”. The implementation of this and lower level are
described in the following sections.

The monitoring software must provide overall status of
the ring, and give warnings when a read-back differs from
its set point by more than some threshold. The status
includes, for example, current, lifetime, closed orbit, orbit
feedback status, orbit stability, single shot beam position,
magnet settings, vacuum, cryogenics system and RF. The
software must be able to log all necessary machine
settings data, and be able to retrieve the historical data for
analysis.

The control part must provide software, either stand
alone applications or scripts, to perform the following
tasks: BPM (including turn by turn) testing and data
analysis, orbit control and optimization, tune and
chromaticity measurement and correction, the response
matrix (Jacobian) for orbit, tune and chromaticity. Internal
notes have been composed and active development is in
progress.

A set of client APIs are grouped by prefix: measure, set,
get, load, save, calculate and plot. For example, the APIs
with prefix measure are for something that requires
changing the hardware settings of a complex set of
hardware in order to achieve a single measurement, while
set APIs involve a simple setting on a single hardware
device or a set of similar hardware. All can be used
interactively without looking up a channel dictionary.
The APIs can operate on magnet names directly but also
provide some low level channel access methods.

SERVICE PROTOTYPES
The services are implemented and prototyped as

JavaIOCs [9], which use PVData as the data container

and PVAccess for network communication [10].
Currently, 3 services have been prototyped: model service
[7], directory service, and gather service. The schematic
for the directory and gather services is shown in Fig 2.

Figure 2: Architecture of 2 services.

The directory service provides an interface to get a list
of PVs (Process Variable) and related properties such as
position information. It uses a relational database,
MySQL, to store all channels and their properties. A client
application gives search constraints by calling a client
API. The search command is passed to a daemon record
which is shown as ChannelFinder Record in Fig 2. The
record is processed inside the JavaIOC, and a RDB query
is performed to get a channel name list with properties,
which satisfied the search constrains. The value is shipped
back to client through a dynamical created PVRecord.
The detailed data flow is shown as Fig. 3.

Figure 3: Data flow and API interface calling for directory
service.

The interfaces to access the directory service are
described as below:

• ChannelFinder. It is the interface for issuing a
request. It adds a single method to what service
client provides.

• sendRequest. It sends a request to server, and the
argument is a search string.

• ChannelFinderRequester. It is the interface that must
be implemented by the channelFinder client. It has
the methods: (1) connectResult, which is called
when waitConnect is called. (2) requestResult,

Proceedings of IPAC’10, Kyoto, Japan WEPEB026

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2741

which is called after a sendRequest and waitRequest
are called. It provides the results.

• RequestResult and ChannelProperty. These 2 classes
provide the result.

After getting the PV list, the client can ship it to another
service, for example the gather service. The gather is
designed to accept a list of PVs, dynamically create and
initialize a new PVRecord if it does not exist, connect to
low level hardware IOCs for example BPM IOCs, and
update its value every time a PV in a low level IOC
changes. The data flow is similar to Fig. 3 and
implementation logic is similar to the logic for the
directory service.

A use case is to fetch an orbit from the BPM IOCs. Fig.
4 shows an example of a client using the above 2 services
to get and display an orbit from the NSLS-II storage ring.
The BPM IOC is simulated using a virtual accelerator,
and the first horizontal corrector strength is set to 1e-5.

Figure 4: Orbit display using services.

The client does the following: Gets a PV list related to
horizontal beam position and location along the storage
ring from the directory service, feeds that list to the gather
service to get horizontal orbit. Thus getting a PV list and
connecting to a low level IOC is distributed to different
services. The client can concentrate, for example, on how
to design a GUI for the operator.

SUMMARY
To satisfy the requirement for NSLS-II beam

commissioning and operation, a client/server based
environment is under development. The system
architecture and software requirements are briefly
described. A 2 layer APIs architecture, which are for
client and server respectively, is designed to satisfy the
requirements. Two service servers, the directory service
and the gather service are described. They are prototypes
based on an open-source project, epics-pvdata.

 PVData is used to store and access memory resident
structured data. PVAccess is used to transfer PVData over
the network. The data flow is described. Based on the
directory and gather services, a client example is
demonstrated that fetches an orbit and displays it on the
presentation layer.

ACKNOWLEDGEMENT
The authors would like to thank Johan Bengtsson,

Weiming Guo, and Donald Dohan for their helpful
discussions and comments on the server development.
They want to give their thanks to Ralph Lange for sharing
his RDB query code to implement the directory service.
They also want to express their thanks to Leo (Bob)
Dalesio and Sam Krinsky for their continuous support and
encouragement.

REFERENCES
[1] http://www.bnl.gov/nsls2/; NSLS-II Preliminary

Design Report (2007).
[2] J. Bengtsson, “Design and Control of Ultra Low

Emittance Light Sources”, in the Proc. of ISCA09,
San Francisco, USA, Aug, 2009

[3] J. Bengtsson, B. Dalesio, T. Shaftan, T. Tanabe,
“NSLS-II: Model Based Control – A Use Case
Approach”, NSLS-II Tech Note 51 (2008).

[4] G. Carcassi, D. Dohan, G. B. Shen, L. R. Dalesio, N.
Malitsky, Y. Tian, A. Ratti, L. R. Doolittle, “NSLS II
Control System”, in the Proc. of ICALEPCS09,
TUP104, Kobe, Japan, Oct 2009

[5] G. Shen, "A Software Architecture for High Level
Applications", Proc. of PAC09, Vancouver, Canada,
2009, FR5REP004

[6] G. Shen, "A Modular Environment for High Level
Applications", Proc. of ICALEPCS 2009, Kobe,
Japan, 2009, THP094

[7] G. Shen, M. Kraimer, P. Chu, J. Wu, “Design of
Accelerator Online Simulator Server Using
Structured Data”, this proceeding, WEPEB024

[8] G. Portmann, J. Corbett, A. Terebilo, “Middle Layer
Software Manual for Accelerator Physics,” LSAP-
302, 2005; J. Corbett, A. Terebilo, G. Portmann,
“Accelerator Control Middle Layer,” PAC 2003.

[9] http://epics-pvdata.sourceforge.net/; M. R. Kraimer,
M. Sekoranja, “JavaIOC Status”, talk on EPICS
Meeting, Oct. 2009, Kobe Japan

[10] M. R. Kraimer, L. R. Dalesio, K. Zagar, M.
Sekoranja, “Evolution of the EPICS Channel Access
Protocol”, in the Proc. of ICALEPCS 2009, Oct.
2009, Kobe, Japan, MOD005

WEPEB026 Proceedings of IPAC’10, Kyoto, Japan

2742

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

