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Abstract 
A software framework for commissioning the NSLS-II 

storage ring beam is in development. It adopts a 
client/server model, and consists of various servers for 
data acquisition, communication and management. Based 
on this structure, physics applications can be developed to 
satisfy the requirements of both day-1 beam 
commissioning and future beam study. This paper 
describes the status of the infrastructure development and 
its applications. 

INTRODUCTION 
NSLS-II (National Synchrotron Light Source II) is a 3rd 

generation synchrotron light source which is currently 
under construction [1]. It consists of a 200MeV linear 
accelerator, a 3 GeV booster, and a 3 GeV storage ring. 
Although based on well known techniques, its design has 
several novel features. For example, it uses DWs 
(Damping Wigglers) to reduce horizontal emittance and 
thus provide high flux X-rays. The design goals present 
some challenging control issues especially non-linear 
dynamics related issues [2] such as control of the 
Touschek lifetime and momentum aperture, control of 
tune footprint, control of impact of DWs and IDs 
(Insertion Device) including leading order nonlinear 
effects from DWs in the DA (Dynamic Aperture) 
optimizations, control of high order chromaticity, and so 
on. All such issues were addressed during the theoretical 
lattice design, but now the challenge is to provide a 
convenient and flexible software framework to address 
these issues during beam commissioning. 

The high level applications developed by accelerator 
physicists should be able to achieve their goals by 
focusing on algorithms while being released from tedious 
data acquisition and manipulation issues. This is the 
design strategy for the software architecture. With a clean 
and carefully designed interface, collaborators, who have 
different areas of expertise such as GUI design, numerical 
analysis, accelerator physics, data acquisition, hardware 
control, and so on, can work together effectively and 
productively. 

Many existing software frameworks, for beam 
commissioning, are available in our community but each    
exchanges data between layers via in-memory data 
structures, files, or methods. None of them can easily 
share data with others or directly include any portions of 
the other frameworks. For example, beam behaviour can 

be predicated by feeding a realistic on-line model to a 
simulation code. A method known as model based control 
can control beam behaviour effectively and dynamically 
by comparing real beam status with the predication. A 
traditional application interfaces directly to its build-in 
simulation code to predicate behaviour, and can only 
communicate with its build-in code. However, it is not 
sufficient to use one simulation code to solve all 
problems. 

 There have been many discussions about how to solve 
the problem of sharing code. Some frameworks such as 
MML [8] (Matlab Middle Layer) provide a set of APIs 
which makes it easier to development new high level 
applications. However, these APIs are not well-defined, 
or widely to use. For the NSLS-II project, a use case 
approach is being studied [3]. Instead of a traditional 
monolithic approach, a client-server based architecture 
has been designed and prototyped. The software 
environment for physics applications is based on EPICS, 
which is used for our hardware control [4]. Detailed 
design can be found in [5, 6], and the architecture is 
shown as Fig. 1.  

 

Figure 1: Architecture of Client/server based HLA. 

Briefly, the system consists of: (1) the data source 
layer, which can be low level hardware control system, or 
a relational database; (2) a service layer, which provides 
services to gather data from the data source layer, and 
perform data manipulations such as constructing an orbit 
using BPM data; (3) the presentation layer, which present 
machine status to operators, and provides an interface for 
machine control  

At NSLS-II, the following services have been 
prototyped: an on-line model service [7], a directory 
service, and a gather service. This paper discusses the 
high level application requirements for NSLS-II, 
describes the implementation of the directory and gather 
services, shows system integration with a use case, and 
gives a summary. 
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SOFTWARE REQUIREMENTS 
The high level applications must satisfy all the 

requirements for beam commissioning and tuning. The 
applications are mainly involved with accelerator physics, 
mechanics, magnets, and vacuum. The required 
applications for the use case approach have been listed in 
[3].  

The high level control environment can be separated to 
two parts: (1) a set of standalone applications whose 
algorithms are mature and can be used in daily operation; 
(2) an interactive environment which is suitable for 
scripting and for prototyping algorithms. A set of well-
defined APIs, like but more clearly defined than MML, is 
required to support both the standalone applications and 
the interactive environment. The APIs must allow users to 
make full use of the functionality and APIs provided by 
lower level servers/libraries. Conceptually, a high level 
application would have the following layers: (1) Client 
APIs provide functions with physics meaning, such as 
“measureChromaticity”, “rampMagnet”, etc.. The API 
operates on element names, e.g. SL1, instead of the long 
EPICS channel names; (2) Server APIs are used to 
implement client APIs. Anything at this level or below is 
hidden from accelerator physicists who are only interested 
in “operating on beam” instead of “operating on 
magnets”.  The implementation of this and lower level are 
described in the following sections. 

The monitoring software must provide overall status of 
the ring, and give warnings when a read-back differs from 
its set point by more than some threshold. The status 
includes, for example, current, lifetime, closed orbit, orbit 
feedback status, orbit stability, single shot beam position, 
magnet settings, vacuum, cryogenics system and RF. The 
software must be able to log all necessary machine 
settings data, and be able to retrieve the historical data for 
analysis. 

The control part must provide software, either stand 
alone applications or scripts, to perform the following 
tasks: BPM (including turn by turn) testing and data 
analysis, orbit control and optimization, tune and 
chromaticity measurement and correction, the response 
matrix (Jacobian) for orbit, tune and chromaticity. Internal 
notes have been composed and active development is in 
progress. 

A set of client APIs are grouped by prefix: measure, set, 
get, load, save, calculate and plot. For example, the APIs 
with prefix measure are for something that requires 
changing the hardware settings of a complex set of 
hardware in order to achieve a single measurement, while 
set APIs involve a simple setting on a single hardware 
device or a set of similar hardware. All can be used   
interactively without looking up a channel dictionary.  
The APIs can operate on magnet names directly but also 
provide some low level channel access methods. 

SERVICE PROTOTYPES 
The services are implemented and prototyped as 

JavaIOCs [9], which use PVData as the data container 

and PVAccess for network communication [10]. 
Currently, 3 services have been prototyped: model service 
[7], directory service, and gather service. The schematic 
for the directory and gather services is shown in Fig 2. 

 

Figure 2: Architecture of 2 services. 

The directory service provides an interface to get a list 
of PVs (Process Variable) and related properties such as 
position information. It uses a relational database, 
MySQL, to store all channels and their properties. A client 
application gives search constraints by calling a client 
API. The search command is passed to a daemon record 
which is shown as ChannelFinder Record in Fig 2. The 
record is processed inside the JavaIOC, and a RDB query 
is performed to get a channel name list with properties, 
which satisfied the search constrains. The value is shipped 
back to client through a dynamical created PVRecord. 
The detailed data flow is shown as Fig. 3. 

 
Figure 3: Data flow and API interface calling for directory 
service. 

The interfaces to access the directory service are 
described as below:  

• ChannelFinder. It is the interface for issuing a 
request. It adds a single method to what service 
client provides.  

• sendRequest. It sends a request to server, and the 
argument is a search string. 

• ChannelFinderRequester. It is the interface that must 
be implemented by the channelFinder client. It has 
the methods: (1) connectResult, which is called 
when waitConnect is called. (2) requestResult, 
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which is called after a sendRequest and waitRequest 
are called. It provides the results. 

• RequestResult and ChannelProperty. These 2 classes 
provide the result. 

After getting the PV list, the client can ship it to another 
service, for example the gather service. The gather is 
designed to accept a list of PVs, dynamically create and 
initialize a new PVRecord if it does not exist, connect to  
low level hardware IOCs for example BPM IOCs, and 
update its value every time a PV in a low level IOC 
changes. The data flow is similar to Fig. 3 and 
implementation logic is similar to the logic for the 
directory service.  

A use case is to fetch an orbit from the BPM IOCs. Fig. 
4 shows an example of a client using the above 2 services 
to get and display an orbit from the NSLS-II storage ring. 
The BPM IOC is simulated using a virtual accelerator, 
and the first horizontal corrector strength is set to 1e-5. 

 

 
Figure 4: Orbit display using services. 

The client does the following: Gets a PV list related to 
horizontal beam position and location along the storage 
ring from the directory service, feeds that list to the gather 
service to get horizontal orbit. Thus getting a PV list and 
connecting to a low level IOC is distributed to different 
services.  The client can concentrate, for example, on how 
to design a GUI for the operator. 

SUMMARY 
To satisfy the requirement for NSLS-II beam 

commissioning and operation, a client/server based 
environment is under development. The system 
architecture and software requirements are briefly 
described. A 2 layer APIs architecture, which are for 
client and server respectively, is designed to satisfy the 
requirements. Two service servers, the directory service 
and the gather service are described. They are prototypes 
based on an open-source project, epics-pvdata.   

 PVData is used to store and access memory resident 
structured data. PVAccess is used to transfer PVData over 
the network. The data flow is described. Based on the 
directory and gather services, a client example is 
demonstrated that fetches an orbit and displays it on the 
presentation layer. 
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