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Abstract 
Various magnet sorting strategies have been used to 

optimize undulator performance, ranging from intuitive 

pairing of high- and low-strength magnets, to full 3D 

FEM simulation with 3-axis Helmholtz coil magnet data. 

In the extreme, swapping magnets in a full field model to 

minimize trajectory wander and rms phase error can be 

time consuming. This paper presents a simpler approach, 

extending the field error signature concept to obtain 

trajectory displacement, kick angle and phase error 

signatures for each component of magnetization error 

from a Radia [1] model of a short hybrid-PM undulator. 

We demonstrate that steering errors and phase errors are 

essentially decoupled and scalable from measured X, Y 

and Z components of magnetization. Then, for any given 

sequence of magnets, rms trajectory and phase errors are 

obtained from simple cumulative sums of the scaled 

displacements and phase errors. The cost function (a 

weighted sum of these errors) is then minimized by 

swapping magnets, using one's favorite optimization 

algorithm. This approach was applied recently at NSLS to 

a short in-vacuum undulator, which required no 

subsequent trajectory or phase shimming. Trajectory and 

phase signatures are also obtained for some mechanical 

errors, to guide "virtual shimming" and specifying 

mechanical tolerances. Some simple inhomogeneities are 

modeled to assess their error contributions. 

INTRODUCTION 

NSLS-II will have numerous planar in-vacuum hybrid-

PM undulators (IVU’s), designed to deliver high-

brightness multi-kilovolt photon beams. They will have 

period lengths typically on the order of 20 mm and will be 

optimized for high brightness at high harmonics. This 

requires minimizing the deleterious effects of field errors, 

which cause not only deviations in trajectory straightness, 

but also introduce phase errors which reduce peak 

brightness, especially at high harmonics. Strategies for 

minimizing these errors include imposition of tight 

dimensional tolerances on poles, magnets, module parts 

and support beams, on tolerance stack-ups, and on precise 

mounting of these components. The second is requiring 

tight magnetic tolerances on the permanent magnet (PM) 

blocks. Magnet manufacturers now routinely achieve 

magnet strength errors of <1% and magnetization angle 

errors of <1°. Still, it is routine practice to measure the X, 

Y and Z magnetic moments of PM’s with Helmholtz 

coils, and to apply some kind of sorting algorithm to 

minimize undulator field errors and their consequences. 

Characterizing magnet blocks in a Helmholtz coil or by 

far field measurements yields the average magnetic 

moments over the magnet. Magnetic inhomogeneities in 

the small IVU magnets are inherently small and will be 

ignored here. 

Magnet sorting methods and criteria for optimizing 

undulators range from intuitive pairing of stronger and 

weaker magnets to minimize field errors (used as recently 

as 2007[2]), to multi-parameter optimization by Simulated 

Annealing [3] or Genetic Algorithms [4] to minimize 

trajectory and phase error. Optimization by shuffling 

magnets requires constructing a field error model from 

measurements of individual magnets, and then computing 

a “cost function” to be minimized. This may be done to 

good approximation for a pure-PM undulator by 

superposition of measured fields of individual magnets, 

since permeability of PM’s is close to 1. In hybrid-PM 

undulators (HPMU’S) with ferromagnetic poles, linear 

superposition of PM fields is not valid. However, for 

small errors, “field error signatures” [5] can be obtained, 

which characterize the change in undulator field due to a 

small change in a magnetic or mechanical parameter, or of 

a magnetic shim [6]. Field error signatures may be scaled 

by Helmholtz data and convolved linearly with the ideal 

field, then integrated to compute trajectory and phase 

errors for a cost function to be minimized, by iterating 

thousands of times – a computationally intense process. 

In this paper we extend the error signature concept and 

directly obtain trajectory kick, displacement and phase 

error signatures of magnetization errors. We show they are 

essentially decoupled and can then be simply scaled and 

summed to obtain a performance cost function. We outline 

a simple magnet swapping algorithm, written in 

Mathematica, to optimize spectral performance. 

MAGNETIZATION ERROR SIGNATURES 

 Figure 1. (a) Radia model of HPMU. (b) Central magnet pair 

with magnetization error components Mz , My and Mx.
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Figure 2(a). Field error signatures for 

±1% errors in remanence (upper) and 

a ±1% y-component of magnetization 

(lower) in central magnet pair. 

Figure 2(b). X-trajectory signatures 

for ±1% errors in remanence (upper) 

and ±1% y-magnetization component 

(lower) in central magnet pair. 

Figure 2(c). Phase error signatures for  

±1% errors in remanence (upper) and 

±1% y-magnetization (lower) in 

central magnet pair. 

 

 

A short HPMU was modeled in Radia, with parameters 

of the NSLS X9 in-vacuum undulator: period u=14.5 

mm, 3.4 mm gap, NdFeB with Br=1.3T. (Figure 1a.) On-

axis fields By0(z) and Bx0(z) as well as trajectories x0(z) 

and y0(z) were computed with no errors applied. Nominal 

errors of ±1% in each component of magnetization were 

introduced in turn in the central magnet pair (Figure 1b):  

(a) Mz/Mz (the principal component) was simulated by 

changing Br by ±1%; (b) My or Mx errors were modeled 

by adding ±0.01 transverse (x or y) components to the 

principal (z) magnetization unit vector. The transverse 

components were oriented to add on-axis. Again, on-axis 

fields and trajectories were computed for each case. 

Subtracting the no-error fields and trajectories, we obtain 

field error signatures and trajectory error signatures for 

each magnetization component. Finally, by computing the 

path length difference S(z) between the trajectories with 

and without the error, normalized by the resonant optical 

wavelength, times 180°/ , we obtained phase error 

signatures (in degrees) for each error component.  

Magnetization Strength Error 

Figure 2 (upper row) shows the signatures of field error 

(%), X-trajectory error (μm) and phase error (degrees) due 

to ±1% error in Br in the central magnet pair. Although the 

field error “bleeds” into 3 or 4 neighboring poles, it 

produces a net x-displacement of ~0.2 μm (~1/3 of the 

wiggle amplitude) with no steering. This gives us a scale 

factor of x = ~0.1 μm per 1% Br/Br per magnet. The 

phase error profile exhibits local over- and undershoots, 

but the net error is ~1.8 °, or  = ~0.9°/ 1% Br/Br per 

magnet. 

Magnetization Angle Errors 

Figure 2 (lower row) shows the signatures of a ±1% y-

component of magnetization in both central magnets. The 

peak y-field error is ~0.3%, mostly localized at the 

magnet, and results in a net steering kick x’ of -/+0.44μr 

(~2 G.cm), or about -2 μr / 1% My/Mz per magnet. The 

phase error becomes oscillatory after the deflection, but 

the average phase shift is zero. 

Not shown, a ±1% x-component of magnetization 

produces peak Bx field error of only 0.003%, a y-kick of 

0.14μr, or 0.07 μr/1% Mx/Mz per magnet, and negligible 

phase error. 

Performance Cost Function 

These models reveal a simple scaling from Helmholtz 

or 3-axis far-field data of the magnet blocks: 

• Mz produces displacement x and phase shift . 

• My produces only an x-kick x'. 

• Mx produces only a y-kick y'. 

For small errors the scaling is linear. The models also 

reveal that the three magnetization error components 

produce effects that are essentially decoupled. For any 

arrangement of magnets we can now construct x and y 

error trajectories and phase error profiles by simple 

recursion. (The ± means that the appropriate sign must be 

applied depending on magnet location and orientation.) 

• x'i+1 = x'i ± x'i+1;   xi+1 = xi ± xi+1 + x'i+1 u/2  

• y'i+1 = y'i ± y'i+1;   yi+1 = yi + y'i+1 u/2  

• i+1 = i + i+1  (independent of orientation) 

The results are net error trajectories (minus local details), 

from which we can compute rms values, and combine 

them into a weighted multi-parameter cost function W: 
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W =  a [h xrms
2 

(upper) + h xrms
2 

(lower) + xrms
2 

(both)]+ 

 b [h yrms
2 
(upper) + h yrms

2 
(lower) + yrms

2 
(both)]+ 

 c [h rms
2 
(upper) + h rms

2 
(lower) + rms

2 
(both)],  

where a, b, c are relative weights we assign to x, y and 

phase terms. We include cost terms for the upper and 

lower arrays individually (weighted by h) to avoid the 

case of large equal and opposite errors in the upper and 

lower arrays cancelling on-axis.
 

A MAGNET SORTING ALGORITHM 

Figure 3 illustrates a simple magnet swapping routine. 

At each iteration two magnets are swapped at random, 

and assigned a random (odd or even) orientation. W is 

computed and the swap is accepted or rejected, based on 

Steepest Descent, Simulated Annealing or other rules. 

Since computation involves just simple running sums, the 

algorithm takes only minutes to test >10,000 swaps and 

reduce W to a small value (limited by data accuracy.) 

Many runs can be done to select the “best-of-the-best”. 

 

 

Figure 3. A simple magnet swapping algorithm. 

Example 

The optimization process described above was applied 

to the 23-period X9 IVU installed in 2008. (At the time 

the cost function only reflected trajectory error.) The 

magnet database consisted of 120 magnets. They were 

measured with a 3-axis Fluxgate Magnetometer in a 

fixture allowing accurate placement of magnets in each of 

4 possible orientations. Sensor and fixture misalignment 

errors are cancelled by averaging. The magnet strength 

variation was within ±1%, while the angle error was 

1.25±0.5°. The systematic error of 1.25° was in the y 

direction. The algorithm in Figure 4 was implemented in 

Mathematica. The code selected 45 magnets at random for 

each array. Some starting arrangements had X walk-offs 

up to twice the wiggle amplitude, and peak phase 

excursions up to 6°. After 10,000 iterations, whether by 

steepest descent or a simplified SA rule, the predicted 

peak X error reduced to <1/10 of a wiggle amplitude, with 

phase error <0.5°. Y trajectories, even random ones, were 

<1/10 of a wiggle amplitude. The X9 IVU, as built, 

achieved a trajectory that needed no shimming (except at 

the terminations) and a phase error of <2° rms. We plan to 

test the algorithm with phase error minimization included, 

on a longer IVU now under construction. 

OTHER MAGNETIC SIGNATURES 

Vertical pole displacement was modeled in a symmetric 

version of our Radia model. The field error is peaked at 

the pole, and produces a kick x'=-0.044 μr and a phase 

step =~0.01° per μm of displacement. If pole heights in 

each array are first mapped on a coordinate measuring 

machine, it may be possible to compensate these fixed 

trajectory and phase errors by magnet shuffling as well.  

Vertical magnet displacement has an anti-symmetric 

field error signature, which produces a non-steering 

displacement x=~0.001 μm and a phase step =~0.005° 

per μm of displacement. Pole and magnet vertical 

displacements are frequently used for “virtual shimming”. 

We also modeled two types of inhomogeneity. (1) For a 

vertical gradient in Mz we found the poles effectively 

homogenize the variations. (2) A horizontal gradient in 

Mz, on the other hand, produces small, equal and opposite 

transverse gradients in field at adjacent poles, resulting in 

a small, non-steering, x-dependent x-displacement.  

CONCLUSIONS 

The magnet sorting described here lends itself to the 

“all-at-once” undulator assembly approach. For 

meaningful sorting, magnet measurements should resolve 

the variations in magnetization to at least 3 significant 

figures. Since magnets have tolerances of <1% and <1°, 

measurements should have resolution and relative 

accuracy to a part in 10
5
 (10 ppm). This is a challenging 

requirement, limited mainly by instrument drift. Besides a 

magnetically and thermally stable environment, one needs 

to track the drift by frequently re-measuring a reference 

magnet while characterizing all the magnets. These 

precautions are being applied to our next undulator. 
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