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Abstract

The knowledge of the distribution of the nonlinear com-
ponents in a ring is important for the resonance compen-
sation. A method to measure the lattice nonlinear compo-
nents based on the nonlinear tune response to a controlled
closed orbit deformation (NTRM) was suggested in [1].
First benchmarking of this method was carried out with
controlled sextupolar errors in the SIS18 synchrotron at
GSI. We present here a further benchmarking of NTRM
by using controlled octupolar errors at CERN SPS.

INTRODUCTION

The nonlinear field errors in the magnets excite un-
wanted resonances, which cause beam loss and dynamic
aperture reduction. An approach to retrieve nonlinear field
components is based on the measurement of the tune de-
pendence on the momentum spread (called the nonlinear
chromaticity) [2]. Varying the strengths of the nonlinear
elements (fitting parameters) of the lattice model the fitted
polynomial is reproduced. Another approach for measur-
ing nonlinear components and compensating resonances is
based on the resonance driving term (RDT) [3]. If the lat-
tice is not free from nonlinearities, the spectrum of the be-
tatron oscillations contains the betatron tune line and sec-
ondary spectral lines from the resonance driving term in
the Hamiltonian to the first perturbative order. In general,
a given spectral line is fed by different multipoles at differ-
ent orders. A technique to diagnose nonlinear field com-
ponents based on the tune response to the deformed CO
was developed at BNL [4]. There the closed orbit was de-
formed via a local bump. At GSI this technique was ex-
tended with the NTRM [1]: The approach used is simi-
lar to the orbit response matrix (ORM) method, where the
CO response to the steering angle change provides infor-
mation on the linear field errors. This method extends the
ORM analogy to the nonlinear errors with the difference
that the tune response to the steering angle change is mea-
sured. The method is therefore referred to nonlinear tune
response matrix (NTRM). This technique is useful for reso-
nance compensation in project as FAIR [5], where the reso-
nance compensation is required for mitigating space charge
effects.

Benchmarking of NTRM at GSI

The NTRM method was experimentally benchmarked at
GSI by reconstructing two controlled normal sextupolar er-
rors with strength of the order of natural errors in the SIS18

[1]. The accuracy reached in the reconstruction of the con-
trolled sextupolar errors is better than 10% for sufficiently
large errors. The benchmarking of NTRM continues by
attempts to reconstruct from six to twelve controlled sex-
tupololar errors. The status this investigation is reported
in [6]. Presently the benchmarking in the SIS18 is limited
by the lack of higher order magnets as octupoles.

THE EXPERIMENT IN THE SPS

The benchmarking of NTRM with octupolar error was
performed at the CERN SPS (SIS18 has no octupoles). The
contribution to the machine tunes of several octupolar er-
rors when the CO is distorted by one steerer is [1]

ΔQx =

Nt∑

t=1

xQ
xx
tt θ

2
xt, (1)

where

xQ
xx
tt =

1

2

1

4π

Nl∑

l=1

βx lK3lM
x
ltM

x
lt +O(2) , (2)

and, θxt is steering angle, Mx
lt is the orbit response matrix

at the location of the steerer and location of the octupolar
error, βx l is taken at the location of the octupolar error, K3l

is the integrated strength of the octupolar error, and O(2)
is the quadratic contribution of sextupoles (see Eq. (20) in
Ref. [1]). The NTRM method requires the measurement
of ΔQx vs. θxt so to determine xQ

xx
tt . If the number of

steerers θxt is equal to the number of errors, then Eq. (2)
form a linear system which can be solved in K3l.

Consequences of the SPS Symmetry

The CERN-SPS has two families of octupoles located
symmetrically in all periods. The octupoles of the each
family are powered by a common power supply. The
horizontal steerers of SPS are placed symmetrically over
the rings’s circumference with respect to the octupoles
of the two families. The symmetrical placement of the
steerers and octupoles respect each other, and the pow-
ering octupoles in families (i.e. with the same strength)
builds a symmetry of the SPS with respect to the steer-
ers and the sequence of octupoles encountered in the ma-
chine. This symmetry leads to the linear dependence of
the rows of the linear system Eqs. (2). A different type of
information is needed to avoid this linear dependence in
Eqs. (2), which can be obtained by breaking up the steerer-
octupole symmetry using a combination of two steerers,
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called here 1, and 2. We create then a “virtual” steerer,
S+ = (S1, S2) = (θ1, θ2) = (θ+), where θ1 = θ2 = θ+.
Therefore Eq. (20) in Ref. [1], for this steerer configura-
tion, yields xQ

xx
+ =x Qxx

11 +x Qxx
22 +x Qxx

12 +x Qxx
21 , that

is
ΔQx = xQ

xx
+ θ2+ = 2(xQ

xx
11 + xQ

xx
12 )θ

2
+. (3)

The term xQ
xx
12 is responsible for breaking the symmetry

allowing the reconstruction.

The Experimental Procedure

For measuring the tune response, a small emittance beam
is created and kicked for exciting transverse betatron os-
cillations. In order to prevent fast beam oscillation de-
coherence, the machine chromaticity is corrected. This
causes additional 3d order resonances and quadratic non-
linear components in SPS. Therefore any controlled oc-
tupolar error would be simply added to the existing know
and unknown nonlinearities. We have considered the case
of two controlled normal octupolar errors (the two fami-
lies of SPS octupoles) to be reconstructed by deforming
the CO by means of two horizontal steerers. As we excite
normal errors, only horizontal deformation of the CO can
reveal them. First, we measure the tune response for the
machine set for normal operation with chromaticity com-
pensated (referred to the setting S0), then we add on the
SPS lattice the two families of octupoles and re-measure
the tune response for the same deformation of the CO (re-
ferred as S0+O). By subtracting the two response curves,
the resulting differential tune response depends solely from
extra octupolar error added to the lattice. As the octupolar
errors are folded linearly into the terms xQ

xx
11 and xQ

xx
+ ,

the experimental task is of measuring the differential tune
response and obtaining xQ

xx
11 and xQ

xx
+ .

A Numerical Example

Fig. 1a shows the horizontal tune response of SPS vs.
horizontal steerers S (MHD10207) and S+ (combination
of the two steerers MHD10207 and MHD20407) over the
maximum possible steering range of [-150μrad;150μrad].
The setting S0 is referred to chromaticity sextupoles of
the five families switched on: K2(LSDA.F)=-0.1672 m−2,
K2(LSDB.F)=-0.0964 m−2, K2(LSFA.F)=0.0416 m−2,
K2(LSFB.F)=0.1619 m−2, and K2(LSFC.F)=0.0416
m−2. The setting S0+O refers to the same chromaticity
sextupoles and octupoles of the two families switched on:
K3(LOD)=4.0 m−3 and K3(LOF)=2.0 m−3. In this simu-
lation the CO is initially deformed of about 2 mm. Fig. 1b
shows the differential tune response, and fitting a quadratic
polynom to the each of the parabolic curves we obtain
xQ

xx
1 and xQ

xx
+ . On Fig. 1c a simulation of the differ-

ence in CO for the settings S0+O and S0 is presented: for
the large steering angles a quadratic-cubic behavior is ob-
tained. If we take the data on the small steerer range (grey
region in Fig. 1b and c) to fit the quadratic polynom, in the
perturbative condition of the linear CO regime, then solv-
ing the system of Eqs. (2) gives the reconstructed solution
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Figure 1: Simulated a) fractional part of the SPS horizontal
tune vs. horizontal steering angles for only chromaticity
sextupoles (blue and light blue) and with octupoles (red and
orange). b) The correspondent differential tune response.
c) Deviation of CO from linear response.

for K3(LOD)=4.01 m−3 and K3(LOF)=1.99 m−3. How-
ever, taking the full range of the nonlinearly responded CO
to the deformation, the reconstructed solution is away from
the set values: K3(LOD)=18.24 m−3 and K3(LOF)=0.86
m−3.

RESULTS
The coherent betatron oscillations of a bunched beam

were excited by a fast kick at injection energy of about 26
GeV/u and an intensity level of approximately 5.5 × 1011
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particles. The kick was given in both x- and y-planes si-
multaneously with θx = 3 kV and θy = 2 kV over all 12
bunches. The chromaticity was corrected and 1024 turns
were measured. The fractional part of tunes were retrieved
using FFT with averaging over the number of BPMs and
over the number of measurements.
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Figure 2: Measured fractional part of the SPS horizontal
tune for chromaticity sextupoles switched on and octupoles
on top of the chromaticity setting vs. horizontal steering
angles S in a) and S+ in b). c) Differential tune response.

Experimental Tunes and Limits of NTRM

Fig. 2 shows the experimentally measured absolute and
differential horizontal tune response for the same steerer
configuration as of the simulation in Fig. 1. The sex-
tupoles and octupoles were excited to the same values as in
the simulation. The octupole values K3(LOD) = 4.0 m−3

and K3(LOF) = 2.0 m−3 were chosen strong in order to
make the differential response more resolvable (of the or-
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Figure 3: Distribution of the reconstructed K3(LOF) and
K3(LOD) for several ranges of COD.

der 10−3), since the precision of the tune measurement is
of the order 10−4. For the same reason, the steerers were
varied almost to the maximum range of 150 μrad. The large
range of the CO deformation (COD) interferes with the per-
turbative condition in which NTRM is valid. Hence, a fit
of tunes with a quadratic polynom does not yield xQ

xx
11 and

xQ
xx
+ .

CONCLUSION

The result of the reconstruction of K3(LOF) and
K3(LOD) depends on which range we select the tunes (or
COD) in Fig. 2. In order to avoid arbitrariness in select-
ing the data range, we proceed with a statistical approach
showing all the results, for arbitrary ranges, in an histogram
(Fig. 3). We find that among all the reconstructed solutions,
which include also the error bar on the fit parameters, the
octupole strength K3(LOF) = 2.35 ± 0.32 m−3 emerges
with a distinct peak (Fig. 3 right). The other otcupolar er-
ror K3(LOD) is not retrieved with decent accuracy. We
attribute this large spread to the deviation of the experi-
mental conditions from the perturbative requirement to ap-
ply NTRM. That is, as here discussed (and also in Sec. III
of Ref. [1]), we used too large COD, and large controlled
octupolar errors.
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