
SERVICE ORIENTED ARCHITECTURE FOR HIGH LEVEL
APPLICATIONS*

P. Chu#, S. Chevtsov, J. Wu, SLAC, Menlo Park, CA 94025, U.S.A.
G. Shen, BNL, Upton, NY 11973, U.S.A.

Abstract
Standalone high level applications often suffer from

poor performance and reliability due to lengthy
initialization, heavy computation and rapid graphical
update. Service-oriented architecture (SOA) is trying to
separate the initialization and computation from
applications and to distribute such work to various service
providers. Heavy computation such as beam tracking will
be done periodically on a dedicated server and data will
be available to client applications at all time. Industrial
standard service architecture can help to improve the
performance, reliability and maintainability of the service.
Robustness will also be improved by reducing the
complexity of individual client applications.

INTRODUCTION
At several accelerator facilities, some Java based

standalone applications have suffered from poor
performance and reliability. The major reasons for the
setback are that the applications have to prepare large
amount of data initialization, perform heavy computation
and communication with underneath control system in
real time, and update high rep rate Graphical User
Interface (GUI). Also, if any application needs a new
function provided by a module not currently called by the
app, it may have to implement the function and, therefore,
further complicate the program flow.

Inspired by the previous control system at SLAC, SLC
(Stanford Linear Collider) Control Program or SCP, one
way to solve the performance and reliability problems is
to implement a Service-Oriented Architecture (SOA) [1-
2] for high level applications. Because SCP contains all
data in a monolithic memory, applications are able to
react to any requests quickly. Different from the SCP
architecture, the new control system is highly distributed
and, therefore, supporting functions should be residing on
various servers. A highly distributed system can also
reduce the risk of potential single point of failure.

SERVICE ORIENTED ARCHITECTURE
Fig.1 shows a top level SOA diagram with a few

services as an example.
Services should be distributed to multiple servers which

can be virtual machines on a physical server. A
distributed system can avoid single point of failure. One
can also add a redundant service provider for any critical
services.

As mentioned above, coding an application with many

functionalities can be tedious. On the other hand, a well-
designed SOA design can greatly reduce the burden on
end developers. Applications then become “thin” clients
without much computation involved. Application
development can, therefore, be greatly facilitated. Coding
up a complicated experiment application will require
much less time and effort. Yet, all the high quality of
supporting functionality is fulfilled because the
complication is maintained on the server side. This
means that even a Matlab script accessing services can
have the same high quality of error handling and message
logging.

Other advantages of the SOA approach include:
• Because the services are centralized control, i.e.

typically only one particular service instance running
at a time. This approach can avoid conflict among
multiple clients accessing the same device; for
instance, feedback and Linac Energy Management
(LEM) program might change the same corrector at
the same time but magnet server can shedule the two
requests properly.

• For individual applications, SOA can avoid large
memory and CPU consumption due to heavy
computation and data process. Therefore, it can also
reduce the chance of client application program
crashing.

• It is not necessary to replace everything overnight.
One can implement a service at a time. If an old
service is replaced by a new one, the application
programming interface (API) should remain the same
so the client application need not to be changed.
This also means the SOA work is highly scalable
depending on the available resources. Furthermore, a
new service should go through stress test before any
client application in production can actually use it.

• If the service protocols chosen are complied with
industrial standard, web and mobile support may be
included.

SERVICE PROVIDERS
As shown in Fig.1, some services are identified as

examples. The granularity of services depends on
functionality shared by clients, performance, robustness
coding complexity, and maintenance. On one hand, too
narrow of a service means many more services in total
and could cause maintenance trouble. On the other hand,
a single service providing too many functions could
reduce its performance and reliability.

Below are a few services we would like to implement
or study.

*Work supported in part by the DOE Contract DE-AC02-76SF00515.
#pchu@slac.stanford.edu

TUPEC072 Proceedings of IPAC’10, Kyoto, Japan

1886

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

Magnet Service
Magnet service handles all magnets’ EPICS Process

Variables (PV) for reading, setting and monitoring.
Client applications do not have to worry about EPICS
Channel nor any other control system underneath.
Features for the magnet service include:

• Updating all prescribed magnets’ set values and
read-back values with monitoring.

• Providing magnet statuses such as active, various
warnings, offline or inactive. Setting magnets should
follow the status for proper action.

• Unit and magnet name conversion between physics
model and control system.

• Handling out-of-tolerance exception when trying to
set a magnet.
o Knowing how to gracefully roll back magnet

settings if any one fails to set.
o Reporting problems to messaging and logging

systems for offline debugging and program
diagnosis.

• Providing other magnet attributes such as location,
polarity, multipoles, aperture size and any other
magnet measurement properties.

• Handing many independent signals in parallel for
best performance.

• Providing software time correlation if hardware time
correlation not available for a pulsed machine.

RF Service
RF Service is very similar to Magnet Service but

dedicated to Klystron/RF signals. For Linac Coherent
Light Source (LCLS), part of the klystron control is still
relying on SLC control system. The hybrid RF system
creates complication for applications which would like to
access the RF signals. Furthermore, actual RF field
amplitude and phase are calculated against beam
reference energies which should be updated regularly.

Model Service
Model service runs online model periodically and

makes up-to-date model data available for any subscribed
clients. This model server can be expended to cover not
only online model but also other beam dynamics

Figure 1: Top level SOA functional diagram. The arrow direction shown in the figure indicates the data flow direction.
For instance, Model Service can provide model data to Linac Energy Management (LEM) Service.

Proceedings of IPAC’10, Kyoto, Japan TUPEC072

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 1887

modelling codes such as start-to-end simulation with a set
of uniform API. Details for the model server will be
described in another paper [3].

Linac Energy Management Service
For example, LCLS Linac klystron complement can

change constantly; in order to maintain the same lattice all
the time, a LEM program has to run regularly. LEM
requires RF data and model tracking; therefore, it is most
efficient that it is running periodically on a server and
updating all data for clients such as LEM application and
control room continuous update display (CUD).

Save/Compare/Restore Service
Save, compare and restore (SCORE) utility has to

acquire data from many signals. It is very expensive to
connect to all those channels. If many SCORE instances
are running concurrently, the performance would suffer
from such overwhelmingly high volume of network
traffic. A service can connect to all necessary signals and
monitor them all the time. Whenever a SCORE snapshot
is requested, all monitored data can be saved immediately.
Some detail requirements for the SCORE Service are:

• Signals can be grouped in SCORE and set different
update rate.

• The backend storage, typically a relational database
(RDB), connection and access can be optimized.

• Use cases for this service: reference orbit snapshot,
online model replay.

Orbit or BPM Service
Orbit service collects all the Beam Position Monitors

(BPM) data and can be buffered for clients to consume.
The data from Orbit Service can be used for orbit display
and beam steering.

Steering or Orbit Correction Service
Steering Service should execute orbit optimization

algorithm continuously to provide orbit correction
solution. The Steering Service is also a consumer of the
Model Service which takes beam tracking data for orbit
calculation. The service can also be a backend for
transverse feedback system.

Start-to-end Simulation Service
A Start-to-end Simulation Service can provide

convenient solution for any applications which need such
detail beam dynamics computation without going through
tedious model runs. Various simulation codes can be run
continuously to supply data to the model server. The run-
control program residing on the server should be robust
and easy to use for physicists.

POSSIBLE SOA TECHNOLOGIES
There are many commercially available SOA solutions.

Communication protocols such as XAL-RPC, JSON-RPC,
Java Message Service (JMS) and EPICS PVData [5] are
under consideration. Commercial packages such as
Oracle Application Server are powerful but expensive.
We would like to prototype a few of the mentioned
technologies. The final choice might not be limited to a
single technology. For the level of data complexity, there
might be different optimal solutions.

CONCLUSION
Presently, several services such as Model Service, LEM

Service and SCORE Service are under prototype. As the
first services are stable enough, they will be deployed to
production. Once we gain some experience, new service
development will be facilitated.

REFERENCES
[1] http://en.wikipedia.org/wiki/Service-

oriented_architecture
[2] Nicolai M. Josuttis, “SOA in Practice: The Art of

Distributed System Design”, O’Reilly Media, Inc.,
2007.

[3] P. Chu et al, “Generic Model Host System Design”,
these proceedings.

[4] P. Chu et al, “Linac Energy Management for LCLS”,
these proceedings.

[5] EPICS PVData reference.

TUPEC072 Proceedings of IPAC’10, Kyoto, Japan

1888

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

