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Abstract

Imagine a virtual cylinder passing through an rf cav-
ity. Given field data on the surface of this cylinder, one
can compute accurate high-order transfer maps for particles
traversing the cavity [1]. This technique is robust against er-
rors or noise present in the surface data; moreover, it is not
limited to accelerating modes. We describe this technique
and present recent work that uses VORPAL [2] field data
as a starting point for modeling crab cavities. In addition,
we present realistic models, including fringes, for several
standing-wave modes. These models, which include a sim-
ple accelerating mode and a TM-110 (crab) mode, are use-
ful for the accurate computation of transfer maps as well
as for constructing model fields that can be used for testing
and comparing a variety of rf cavity codes.

INTRODUCTION

For the design of high-performance linear accelerators
and storage and damping rings, it is essential to have re-
alistic electric and magnetic field information for the vari-
ous beam-line elements so as to compute accurate design
orbits and high-order transfer maps. The use of 3D mag-
netic and electromagnetic codes can provide realistic field
data on a grid. However, the computation of high-order
transfer maps requires a knowledge of high derivatives of
the field data, and numerical differentiation is intolerably
sensitive to noise in the grid data. Considerable effort has
been devoted to solving this problem using surface meth-
ods [1, 3, 4, 5, 6, 7, 8, 9]. The effect of numerical noise,
and its amplification by numerical differentiation, can be
overcome by fitting grid data onto a bounding surface far
from the beam axis and then continuing inward using var-
ious kernels related to the Maxwell equations. While the
process of differentiation amplifies the effect of numerical
noise, the process of continuing inward is smoothing.

Surface methods take into account all fringe-field and
high-order multipole effects, satisfy the Maxwell equations
exactly, and have globally controlled error [1, 10]. As a re-
sult one can now obtain realistic design orbits, and realistic
high-order transfer maps, for an entire accelerator or stor-
age ring without the uncertainties associated with the use
of approximate field models.
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FROM SURFACE FIELD DATA TO MAPS

The essential idea is to use surface methods to compute
robust on-axis derivatives of an electromagnetic mode. Spe-
cial combinations of those derivatives—called generalized
gradients—are the coefficients in a transverse expansion of
the associated vector potential. Inserting this vector poten-
tial into the appropriate Hamiltonian, one then integrates to
obtain the corresponding high-order transfer map.

For an rf cavity, we imagine a circular cylinder that
passes through it and extends to where the field is negli-
gible. Using the electromagnetic code VORPAL [2], we
compute the fields on a mesh and interpolate the data onto
our virtual cylinder. The resulting data can then be handed
to MARYLIE/IMPACT (ML/I) [11, 12, 13], which com-
putes the corresponding transfer map through fifth order.

For this method to succeed, however, the data must cor-
respond to a single mode of excitation in the cavity. (One
may later, if desired, superpose several different modes by
summing the respective vector potentials.) A second mode,
even if of very small amplitude, will pollute the computa-
tion of the generalized gradients. Given a particular mode
of known symmetry, one may be able to excite just that
mode—but one must pay close attention to every detail.

An alternative exists in the form of a post-processor that
uses the filter diagonalization method (FDM) to extract
(possibly degenerate) modes from an electromagnetic (EM)
simulation [14]. There are some mild constraints on the
type of EM simulation concerning, for example, how the
driving current must be turned on and off. But one now
need not worry about the presence of multiple modes in the
EM simulation: the FDM will separate them.

For benchmarking, we used a simple pillbox geometry.
VORPAL field data was used to compute transfer maps
in ML/I. Extracting two different modes—an accelerating
mode and a deflecting mode—we compared the results of
particle tracking computed by VORPAL and ML/I. In both
cases, the results agreed to within 0.2% over a 60◦ range of
phase, and to within 2% over a 120◦ range of phase.

REALISTIC MODELS OF RF MODES

The strong smoothing inherent in our surface methods
means that even a relatively simple model for the surface
field results in an interior field that agrees remarkably well
with that obtained from a full electromagnetic simulation.
Thus, knowing only the most basic cavity parameters—
number of cells, cell and gap lengths, bore radius, cavity
frequency, and field strength—one may easily compute the
electric field at an arbitrary location in the cavity, including
the fringe-field regions.
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Figure 1: A simple standing-wave mode in an rf cavity.
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Figure 2: (Color) This plot shows for the five-cell axi-
symmetric accelerating mode of Fig. 1 the longitudinal
(red) and radial (green) components of the electric field rel-
ative to the field Eg at the bore radius a. It also shows
the magnetic field cBφ (blue) relative to Eg . These com-
ponents are shown at radius ρ = 0.75a parallel to the
axis. The cavity parameters are L = 0.2125m, g = 2L/3,
a = L/3, and ν = ω/2π = 700MHz.

Axi-symmetric Accelerating Mode

The analytic model presented in [1] describes an accel-
erating mode in an axi-symmetric cavity. That model as-
sumes the longitudinal field Ez at the bore radius a has
fixed magnitude Eg in gaps of length g, alternating in sign
from gap to gap, and vanishing elsewhere along the bore
(see Fig. 1). One may now compute the radial and longitu-
dinal electric field components by quadratures:

Eρ(r) =

∫ ∞

−∞

dk√
2π

eikz
(
− ik

κl

)
ẽ0(k)R1(k, ρ), (1a)

Ez(r) =

∫ ∞

−∞

dk√
2π

eikz ẽ0(k)R0(k, ρ), (1b)

where the characteristic function ẽ0(k) is given by the rule

ẽ0(k) =
g Eg√

2π R0(k, a)

sin(kg/2)

kg/2
FN (kL) e−ikzc . (2)

Here L denotes the length of each cell (gap plus iris);
FN (kL) denotes a form factor [15] that depends only on
the product kL and the number N of cells; and zc de-
notes the longitudinal center of the rf structure. In addition,
Rm(k, ρ) denotes a hybrid Bessel function of order m that
crosses over from the regular to the modified form as the

Figure 3: (Color) A simple crab mode in an rf cavity. The
cosφ dependence is indicated only by the change in sign
of the electric field (red) from the upper to the lower sides
of each gap. The associated magnetic field is indicated in
blue.

wave number k becomes greater than the mode wave num-
ber kl ≡ ωl/c. The argument passed to the appropriate
Bessel function is κlρ, where κl denotes the k-dependent
quantity

κl =
√
|k2 − k2l |.

Because we assume time-harmonic fields, we compute the
associated magnetic field simply by taking the curl of E.

Figure 2 shows profiles of these fields—both E and B—
normalized with respect to Eg . The profile of Ez shows
only a slight radial dependence. The profile ofEρ, however,
shows a strong radial dependence. Indeed, Eρ has a radial
dependence given by the R1(k, ρ) in Eq. 1a, which yields
the expected linear dependence on ρ for small ρ. Most strik-
ing, perhaps, are the ears that develop on Eρ as ρ increases;
these are associated with the rapid change in the electric
field between gap and iris near the bore radius and are seen
in electromagnetic simulations of realistic multi-cell struc-
tures.

Crab Cavity Mode

A simple model for the TM110 mode of a crab cavity
(see Fig. 3) mimics that of the previous section, but with
the longitudinal field in each gap now modulated by cosφ.
In addition, we insist that the azimuthal electric field vanish
at the bore radius. For this model one may compute the
electric field components [15]

Eρ(r) =

∫ ∞

−∞

dk√
2π

eikz
(
− ik

κl

)
ẽ1(k)

[
R2(k, ρ)

−R2(k, a)
R1(k, ρ)/(κlρ)

R1(k, a)/(κla)−R0(k, a)

]
cosφ,

(3a)

Eφ(r) =

∞∫

−∞

dk√
2π

eikz
(
− ik

κl

)
ẽ1(k)

[
R2(k, ρ)

−R2(k, a)
R1(k, ρ)/(κlρ)−R0(k, ρ)

R1(k, a)/(κla)−R0(k, a)

]
sinφ,

(3b)

Ez(r) =

∫ ∞

−∞

dk√
2π

eikz ẽ1(k)R1(k, ρ) cosφ, (3c)
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Figure 4: (Color) This plot shows for the simple five-cell
crab mode of Fig. 3 the longitudinal (red) and radial (green)
components at φ = 0 of the electric field relative to the field
Eg at the bore radius a. It also shows the corresponding
azimuthal component (blue) at φ = π/2. These compo-
nents are shown for ρ = 0.75a. The cavity parameters in
this case are L = 0.2125m, g = 2L/3, a = L/3, and
ν = ω/2π = 700MHz.

where the characteristic function ẽ1(k) has the same form
as in Eq. 2, but with R0 now replaced by R1. In Fig. 4 we
show how the components of this electric field vary along
the axis. These components must be multiplied by the ap-
propriate factor of cosφ or sinφ.

An important application of the rf cavity mode described
by this model is that of a crab cavity phased so its vertical
magnetic field delivers to the beam a horizontal kick that
varies from head to tail [16]. Using this model, a straight-
forward application of the Panofsky-Wenzel theorem [17]
yields the result [15]

px = −1

2

egEg

ωla

sin(klg/2β)

klg/2β

kla/βγ

I1(kla/βγ)
FN

(klL
β

)
ie−iθp ,

(4a)

py =
1

4

(
kla

βγ

)2
xy

a2
px, (4b)

valid for small ρ. Note that for a single-cell structure, the
factor FN · ie−iθp simplifies to sin θp. To first order, then,
the horizontal kick is governed by the particle phase θp, and
the vertical kick is proportional to px ·xy. One may readily
compute the higher-order contributions.

SUMMARY

Using the filter diagonalization method, one may reliably
extract from an EM simulation the field data corresponding
to a particular mode in an rf cavity. Then, using surface
methods, one may compute accurate generalized gradients
that are robust in the presence of noise.

We convert the generalized gradients into vector poten-
tials and, thence, into high-order transfer maps. The gener-
alized gradients we compute just once. The maps must be
recomputed for different cavity phase settings.

We have presented a technique that enables one to con-
struct realistic models for a variety of rf cavity modes. In
particular, simple models of the field on a cylindrical sur-
face allow one to compute analytically the characteristic
functions that describe a given mode. The computation
of the field is then reduced to a quadrature. These results
may be used for computing field data and transfer maps,
both suitable for benchmarking rf cavities in beam dynam-
ics simulations. As another example of the utility of these
models, we gave an analytic computation of the transverse
kick delivered by a realistic crab cavity.

The technique described here applies not just to axi-
symmetric accelerating modes, but to very general field
profiles. This allows it to take into account the distortions
caused by HOM couplers and the like. Moreover, one may
superpose modes by adding the corresponding vector po-
tentials.

The virtue of the approach discussed here is that it works
not by differentiating on-axis data, but instead by integrat-
ing over surface field data. This approach does require
more work, but it yields extraordinarily robust results.
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