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Abstract 
The design of RF cavities is a multivariate multi-

objective problem. Manual optimisation is poorly suited 
to this class of investigation, and the use of numerical 
methods results in a non-differentiable problem. Thus the 
only reliable optimisation algorithms employ heuristic 
methods. Using an evolutionary algorithm guided by 
Pareto ranking methods, a crab cavity design can be 
optimised for transverse voltage (V୘) while maintaining 
acceptable surface fields and the correct operating 
frequency.  

Evolutionary algorithms are an example of a parallel 
meta-heuristic search technique inspired by natural 
evolution. They allow complex, epistatic (non-linear) and 
multimodal (multiple optima and/or sub-optima) 
optimization problems to be efficiently explored. Using 
the concept of domination the solutions can be ordered 
into Pareto fronts. The first of which contains a set of 
cavity designs for which no one objective (e.g. the 
transverse voltage) can be improved without 
decrementing other objectives.  

EVOLUTIONARY ALGORITHMS (EA)  
Evolutionary algorithms are an example of a parallel 

meta-heuristic search technique inspired by natural 
evolution. Unlike many optimisation methods, EAs work 
from a population of solutions. Recombination operators 
are applied to share information, and mutation operators 
to explore new regions of the search space. This allows 
for complex, epistatic (non-linear) and multimodal 
(multiple optima and/or sub-optima) optimization 
problems to be efficiently explored. [1]  

Real-coded EAs (RCEA) are used in a wide range of 
scientific applications and their characteristics are well 
understood. They are well suited to performing 
optimizations in problems with a high dimensionality. 
RCEAs are distinct from genetic algorithms in that they 
manipulate the parameters numerically rather than 
encoding them as binary information. [ 1] 

The problem is represented using the abstraction of 
individuals in populations. Each individual has a decision 
vector (the inputs to the simulation or calculation) and a 
solution vector (the outputs) and so maps the independent 
variables onto the dependant. It is the manipulation of 
these vectors which the EA performs. 

A basic optimisation algorithm of this kind uses 4 
distinct blocks (see fig 1). An initialiser which produces 
the initial population of guess decision vectors. The 
calculation block which evaluates the decision vector to 
find the solution vector. The selection block which 
determines the best individuals (using a property known 
as fitness) to take part in the final block, recombination. 

This stage combines the decision vectors of the best of the 
population to create an individual which is expected to be 
“fitter”. The final three stages are then repeated until a 
stop condition is met. 

 

 

Figure 1: Basic evolutionary Algorithm Structure. 

If a single objective is to be used then the fitness is 
defined to be this objective. However if there are multiple 
objectives this definition is more complex.  

Multiple Objective EAs (MOEAs) 
In any multi-objective simulation there exists a set of 

solutions which are demonstrably superior to all other 
solutions. Such a set is known as a Pareto optimal set, 
critically no member of this set can be said to be superior 
to any other. [3] 

Classical methods, such as objective weighting, often 
converged to a single value of the Pareto optimal set. 
Modern Multiple Objective EAs (MOEAs) allow the full 
front to be found and are often based on the concept of 
domination (see fig 2): 

ࢇ  ع  ࢈
 

where ع denotes all components are greater than or equal 
to and a and b are solution vectors. 

These vectors can be arranged into Pareto fronts 
(solution vectors where no one characteristic can be 
further optimised without detrimental effect on the other 
characteristics) the first of which is the Pareto optimal set 
and contains no dominated individuals.  

 

Figure 2: The effect of ࢇ ع  on the space behind a series ࢈
of points. The darker colours represent a more highly 
dominated area. 
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SPEA2 [2] (Strength Pareto EA 2) and NSGA-II [3] 
(Non-dominated Sorting Genetic Algorithm*) use the 
concept of domination to simultaneously converge on a 
set of Pareto-optimal† solutions. A single solution can 
then be selected from the set by an informed design 
engineer. The two methods show differing convergence 
characteristics depending on the type of problem. In some 
complex problems, it is possible for the algorithm to 
converge to a Pareto-optimum set which is not truly 
optimal.  

The use of an EA can return surprising results, such as 
the Tech-X simulation of a Periodic Band Gap cavity. [4] 

CRAB CAVITIES 
In particle accelerators a non zero crossing angle can be 

used to increase luminosity and avoid parasitic collisions. 
To achieve the increase in luminosity before collision the 
bunches must be rotated so they collide head on. This is 
achieved using the dipole mode of a cavity. The phase of 
this mode is such that the magnetic field in the centre of 
the cavity deflects the leading edge of the bunch in the 
opposite direction to the trailing edge, while leaving the 
centre unperturbed, and thus the bunch is rotated. [6] The 
electric field in the cavity iris also contributes to this 
deflecting effect (see fig 3). 
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Figure 3: The fields used in a crab cavity to deflect the 
leading and trailing edges of the bunch  

There are multiple figures of merit which can be 
defined for such a cavity based on the magnitude of the 
deflecting “kick” and the peak fields. These figures of 
merit will make up the solution vector. 

Transverse voltage 
The deflecting “kick” delivered by a crab cavity, 

although it is delivered through a combination of the 
electric and magnetic fields, is defined using the 
transverse voltage ሺV୘ሻ. This can be found from a 
longitudinal voltage using Panofski-Wenzel theorem [5]: 
                                                           
* Although NSGA uses the term “Genetic Algorithm”, It is in reality a 
fitness assignment system that can be, and is, applied to other forms of 
EA. 
† A Pareto-optima is a solution to a multi-objective problem, where no 
one objective can be improved without detrimental effects on other 
solutions. A Pareto-optimal set are a set of such solutions, no one of 
which can be considered “better” than any other. 

 ்ܸ ൌ ௭ܸሺ݀ሻܿ߱݀  
 
where V୸ሺdሻ is the voltage in the direction of 

propagation at position d, c is the speed of light and ω is 
the angular frequency of the mode. V୘ is of course strongly related to the stored energy. As 
in accelerating cavities the R/Q is a suitable figure of 
merit. The transverse R/Q is defined by using the standard 
accelerator definition for longitudinal R/Q applied to V୘: 
[6] 
 ܴ/்ܳ ൌ ்ܸ ଶܷ߱ 
 

where U is the stored energy. 

Peak fields 
The peak magnetic fields (ܪ௣௞ሻ are constrained if a 

superconducting crabbing cavity is to be used. If the peak 
fields increase beyond a certain limit then the cavity will 
quench. In order to normalise for the accelerating field the 
ratio of peak field to accelerating voltage is used: [6] 
௣௞்ܸܪ   

 
A high peak electric field (E୮୩) increases the risk of 

field emission and also must be minimised and kept 
below a defined limit: [6] 
௣௞்ܸܧ   

Frequency Targeting 
The frequency of the cavity must meet the 

specification. Using a Pareto based MOEA allows the 
algorithm to tune the cavity while simultaneously 
optimising the other parameters. Without intervention it 
will however produce the optimum H୮୩/V୘ and R/Q୘ for 
a range of frequencies.  

To strongly target a suitable frequency, Pareto Search 
Pressure focusing can be used (see fig 4). [7] In NSGA-II 
the fitness of the individuals is defined by the “Pareto 
front” which contains them. [3] This fitness can be 
manipulated by demoting the individuals by one front 
(and so in fitness) if they do not meet certain criteria. In 
this case the individuals can be demoted if they are not at, 
or within a tolerance of, the target frequency. This 
approach effectively allows off target cavities with low E୮୩/V୘, H୮୩/V୘ and high R/Q୘ to be tuned to the correct 
frequency. 

 

.
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Figure 4: PSPF (Pareto Search Pressure Focusing) alters 
the search pressure (denoted by arrows), increasing it 
above the focusing cut off. 

To calculate these figures of merit the simulation code 
must be capable of accurately calculating the resonant 
frequency of the dipole mode; ܧ௭ along a line; the energy 
stored in the cavity; and the peak magnetic and electric 

fields on the surface. From these the figures of merit can 
be calculated to create the solution vector: ܵݎ݋ݐܸܿ݁ ݊݋݅ݐݑ݈݋ ൌ ൤െ|ܨ െ ,|்ܨ ܴ/்ܳ , െ ௣௞்ܸܧ , െ ௣௞்ܸܪ ൨ 

Where ܨ is the dipole frequency, ்ܨ is the target 
frequency and a maximisation algorithm is used. 

The decision vector will be made up of the various 
dimensions which are variable in the chosen cavity 
geometry.  

Optimisation 
The advantage of analysis using the domination 

concept can be seen when E௣௞/்ܸ  and ܪ௣௞/்ܸ  are plotted 
for a range of existing cavity designs and hand optimised 
examples (see fig 5). A clear front can be seen at the 
bottom left of the problem (as this is a minimisation 
optimisation). 

Multi Objective Evolutionary Algorithms clearly have 
the potential to improve the design of crabbing cavities. 
Supplied with a suitable parameterised model they can 
supply a trade off curve between E௣௞/்ܸ  and ܪ௣௞/்ܸ  for 
a given design. This would allow the comparison of the 
advantages of cavity features rather than particular 
examples.

 
Figure 5: An example of how the concept of domination and Pareto fronts can be applied to crab cavity properties which
 are

 
to be minimised. An approximate Pareto optimal set for this data (proposed crabbing cavities for LHC) is marked.  
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