
ARTIFICIAL INTELLIGENCE SYSTEMS FOR ELECTRON BEAM
PARAMETERS OPTIMISATION AT THE AUSTRALIAN SYNCHROTRON

LINAC∗

E. Meier† , M.J. Morgan,School of Physics, Monash University, Melbourne 3168, Australia
S.G. Biedron, Argonne National Laboratory , IL 60439, USA

G. LeBlanc, Australian Synchrotron, Melbourne, Australia

Abstract

We report the development of an artificial intelligent (AI)
system for the optimisation of electron beam parameters at
the Australian Synchrotron Linac. The system is based on
state of the art developments in Artificial Intelligence for
video games and is adapted here to beam parameters op-
timisation problems. It consists of a genetically evolved
neural network that mimics an operator’s decisions to per-
form an optimisation task when no prior knowledge, other
than constraints on the actuators, is available. The system’s
decisions are based on the actuators positions, the past per-
formance of close points in the search space and the prob-
ability of reaching a better performance in the local region
of the search space.

INTRODUCTION

With a view to control the energy and bunch length at the
FERMI@Elettra Free Electron Laser (FEL) [1], the present
study considers novel techniques for adaptive control. This
project aims to adapt state of the art developments in Ar-
tificial Intelligence for video games to machine optimisa-
tion and control applications. Parallels are made between
a “game agent” navigating in a battle field and an “opti-
misation agent” navigating in a search space. The idea is
to evolve intelligent systems that can learn and adapt from
their interaction with their environment through time.

The optimisation tool that has been developed for opti-
misation of the Australian Light Source is presently built
for a 2D search space (i.e. two actuators) and can be fur-
ther extended to N-dimensional problems. This tool is the
first step towards adapting state of the art developments in
video games, in order to control a linear accelerator. We
aim to evolve a system that can make decisions in a simi-
lar way to what an operator would do. This is of particular

∗Work supported by Monash University, Sincrotrone Trieste and the
Australian Synchrotron.

† evelyne.meier@synchrotron.org.au

interest for FEL accelerators as the parameters need to be
readjusted in order to meet users’ requirements regarding
the light produced. In new FEL facilities, this is currently
done by an operator loading the configuration that produces
the closest beam parameters to those desired, and making
adjustments until meeting the requirements. An A.I. sys-
tem that can perform this task in an efficient way could
save considerable time.

The basic idea is to develop a system that can learn
through time and from its interaction with the machine.
This is important, for example when jitter conditions
change or when an element (either a controllable, magnet,
etc) is faulty. When another controllable is to be used in-
stead, the adaptive controller could quickly learn the re-
sponse of the new controllable. The use of an AI system
instead of could save considerable time in optimising the
accelerator parameters.

BACKGROUND ON NEURAL NETWORKS

A neural network (NNET) consists of an interconnected
group of artificial neurons as shown in Fig. 2. Each neuron
receives stimuli from other nodes in the network; each of
these inputs to a node has a “weight” w associated with it
as well as an activation function, which tells a node when
to fire. A neuron may also add a “bias” value θ, to the
weighted inputs and any bias is passed through the activa-
tion function; the resulting value is available as the node
output. Commonly used activation functions are linear,
hyperbolic tangent, sigmoid, or gaussian. Gaussian net-
works are also known as “Radial Basis Function Networks”
(RBFN) due to the radial nature of the activation function
[2, 3].

During the training phase, the network is presented with
an input vector and the resulting output vector is compared
to the desired output vector; the network weights are then
adjusted by a learning algorithm.

and Sincrotrone Trieste, Italy

TUPEC025 Proceedings of IPAC’10, Kyoto, Japan

1770

02 Synchrotron Light Sources and FELs

T12 Beam Injection/Extraction and Transport

Figure 1: Schematic diagram of an artificial neuron. The
node receives inputs from other nodes, which are multi-
plied by their respective weights and fed into the activation
function.

THE NEURO-EVOLUTION THROUGH
AUGMENTING TOPOLOGY (NEAT)

TECHNIQUE

This technique was introduced by K. Stanley at the Uni-
versity of Texas, Austin (see Stanley et al. 2002). The mo-
tivation for the development of such system comes from the
need of more adaptive behavior of game agents. In current
video games, the actions of an agent are pre-programmed
and there is little or no room for learning. This makes an
agent’s behavior predictable and the games less entertain-
ing. To overcome this, Stanley et al. developed agents that
can learn through their interactions with the player during
the game. In that way, the game becomes more interest-
ing for the player as the actions of the agent are not pre-
dictable. Their approach consists of genetically encoded
neural networks, which are evolved over time, according to
their performance. During the process, the network is told
how well it performs each time it makes a decision, and
evolution will select the fittest networks to generate a new
generation. This training technique is an adaptation of a
training method known as reinforcement learning [5].

Unlike conventional training techniques, NEAT acts on
both the weights and the structures of networks to evolve
individuals. A population of individuals is evolved by
crossing over individuals though generations. Individuals
are selected for cross over according to a fitness function.
NEAT evolves networks from a simple initial structure and
only complexify structures when necessary. The evolution
process only stops when an individual has reached a de-
sired level or fitness or when the maximum number of gen-
erations has been reached.

With NEAT, the whole population is evolved until an in-
dividual is considered successful in the task. This takes up
to a few hundred generations and must be performed off-
line. This would be impractical for video game applica-
tions, where the network would have to learn from its envi-
ronment in real time [6, 7]. For this, an adaptation of NEAT
to real time problems known as real time NEAT (rtNEAT)
was developed. With this approach, a neural network takes
control of a game agent for a limited time only. The struc-

ture of an agent is therefore evolving as the game is played,
making it possible to develop more sophisticated behavior
in real time and according to situations encountered during
a specific game. This approach is of particular interest for
applications in a real accelerator environment. Because the
idea is to build a controller that eventually learns from its
interaction with the machine in real time, it is necessary to
have a system that does not rely on an off-line training.

APPROACH

Here we consider parallels between the evolution of a
game agent in a battle field and an optimisation agent in a
2D search space.

To win a battle, a game agent has to make decisions
based on the information it receives on its environment.
Let’s consider the situation in Fig. 3. In this figure, the
game agents are the small dots, whose aim is to destroy
the two square turrets. They also need to learn to navigate
through the maze in order not to get trapped against a cor-
ner and getting shot. An agent’s actions include shooting,
moving forward, turning or jumping. Information on its en-
vironment can take into account the position of an enemy
and whether this enemy is firing in its direction. Proxim-
ity of wall and other obstacles are also part of the inputs.
Each time an agent takes an action, il will be rewarded or
penalised depending on the outcomes. For example, if the
agent has shot a turret it will receive a reward point. On the
other hand, negative points are attributed when the agent
is informed that the enemy is firing in its direction and the
agent did not do anything about it, or took a wrong ac-
tion [8].

A direct similarity with the game agent is that the op-
timisation agent must remain within the specified bound-
aries of the search space. This is very important because
for an on-line optimisation actuators have physical limits.
For instance, the voltage of an RF section or the current of
a focusing magnet must remain below the safety limit. In a
video game, the agent develops strategies to shoot the tur-
rets. It is therefore attracted to the positions occupied by
these latter objects in order to destroy them. In a similar
way, the optimisation must be attracted to local maxima,
by working its way towards the direction that increases the
value of the objective function. In the video game, when a
turret is destroyed, the agent would look for the existence
of further enemy targets. Similarly, the optimisation agent
is looking to find other maxima, if the value of the current
local maxima is not satisfactory.

Like the game agent, the optimisation agent only has a
limited range of action. It can only take little steps in the
search space to try to improve the machine performance,
and is only provided with information of past trials close
to its current location. This is very important because it
considerably reduces the amount of data that needs to be
processed by the neural network.

Proceedings of IPAC’10, Kyoto, Japan TUPEC025

02 Synchrotron Light Sources and FELs

T12 Beam Injection/Extraction and Transport 1771

Figure 2: Encoding of NEAT. The neural network is genetically encoded with two sets of genes; the nodes genes and the
connections genes. The node genes identify a nodes ID number and its type: input, output or hidden. The connection
genes encode the start and end nodes of the connection as well as the weight and whether the connection is active or not.
Figure taken from [4].

Figure 3: In a video game the agent has to navigate through
a maze and aim to shoot the enemy turrets. Figure taken
from [6].

FUTURE RESEARCH

The next step consists of the generalisation of the tech-
nique to N-dimension search spaces from the 2-D structure.
This will complete the structure of the system. Simulations
and experiments in an operational accelerator environment
should validate the functionality of the optimisation agent.

A longer term project consists of adapting the technique
to optimisation problems. This can be realised with two
different approaches. The first consists of using the opti-
misation agent to optimise the parameters of an existing
control algorithm. For example, it could be used to search
for the most appropriate gains of a PID algorithm. In a
second approach, the agent could perform the control di-
rectly. In the optimisation experiments the system had as
its aim to maximise the value of an objective function. In

a similar way, in a control problem the agent would have
to minimise the deviation of the electron beam parameters
from the desired settings.

REFERENCES

[1] Sincrotrone Trieste. FERMI@Elettra Comissionning Design
Report, January 2007.

[2] G.W. NG. Application of neural networks to adaptive control
of nonlinear systems. Research Studies Press, 1997.

[3] M.J.L. Orr. Introduction to radial basis function networks.
April 1996.

[4] K. O. Stanley and R. Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary computation,
10:99–127, 2002.

[5] K. O. Stanley and R. Miikkulainen. Efficient reinforcement
learning through evolving neural network topologies. In Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2002). Morgan Kaufmann, 2002.

[6] K. O. Stanley, B. Bryant, and R. Miikkuulainen. Real-time
neuroevolution in the nero video game. IEEE Transactions
on Evolutionary Computation, 9:653–668, 2005.

[7] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Real-time
neuroevolution in the nero video game. IEEE Transactions
on Evolutionary Computation, 9:653–668, 2005.

[8] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov,
K. O. Stanley, and C. H. Yong. Computational intelligence in
games. In Computational Intelligence: Principles and Prac-
tice. Piscataway, NJ: IEEE Computational Intelligence Soci-
ety. chapter, pages 155–191, 2006.

TUPEC025 Proceedings of IPAC’10, Kyoto, Japan

1772

02 Synchrotron Light Sources and FELs

T12 Beam Injection/Extraction and Transport

