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The plug gun was tested first without a GaAs cathode. 
After cooling it down to 2K, we measured the Q factor As 
shown in Figure 2. During the second cool-down, we 
inserted the cathode plug. The Q dropped from 3*109 to 
1.78*108 because of the electric losses in the GaAs 
cathode. Unlike a DC gun the RF electric field penetrates 
into the GaAs cathode, causing dielectric losses. The 
flatness of the Q0 curve with the cathode indicated that the 
cavity did not quench. However, the drop was much 
larger than initially estimated. A careful analysis was 
necessary.  

We simulate heat generation and flow from the GaAs 
cathode using the ANSYS program. The results match the 
measurements well. Following from the findings with the 
heat load model, we designed and fabricated a new 
cathode holder (plug). 

HEAT LOAD DUE TO RESISTIVE 
LOSSES DUE TO THE DOPING 

The GaAs crystal used for the photocathode is a zinc 
doped (p type) one with a heavy doping of 1018 cm-3 to 
prevent the build-up of charge on the surface, viz, NEA 
surface. The GaAs wafer has an active area of 2mm by 2 
mm and is of 0.6mm thick. We cannot neglect the 
resistive heat load due to the high p-doping of the GaAs 
crystal. The dissipated power per unit area due to Joule 
heating is [6]: 

21
2c s

s

P R H ds= ∫
(1) 

The surface resistance  can be calculated from 

the skin’s depth δ
σμω

=
2

 and the resistivity of GaAs. 

To model the heat load from the GaAs crystal correctly tt 
is essential that we know the resistivity of GaAs at 4k. 
The manufacturer specifies it as 3.4*10-2 ohm-cm at 
290K. 

 
Figure 3: The GaAs resistivity by the temperature from 
300K to 4K. 

We measured the resistivity at 4K using the four-point 
method, which avoids the impedance of the connection of 
the probe to the GaAs wafer. It is calculated using the 

formula
I

UgR = , where g is the geometric factor of the 

GaAs crystal. We obtained that factor for our device via 
taking a measurement at room temperature and comparing 
it to the manufacturer’s specification.  

Figure 3 shows the measured resistivity during the 
cool-down to 4k. As the doping increases, a larger 
number of holes are forbidden to participate in hole-
electron scattering because the Fermi level moves deeper 
into the valance band with most states below the Fermi 
energy being occupied. So, there is little variation with 
the temperature we explained this by the fact that in GaAs 
the Fermi level is below the conduction level. At 4K and 
the resistivity is 1.1*10-2 ohm-cm.  

Knowing the resistivity and gun’s geometry, we can 
calculate the magnetic field, for which we used the 
computer code SUPERFISH. To compare these finding to 
the experimental ones, we normalized the peak field to 5 
MV/m. 

The magnet field increases linearly from the center of 
crystal to its edges. With the value of the magnet field and 
surface resistance that we obtained from measuring the 
GaAs resistivity, we calculated the resistive heat load. We 
found that a 200mW heat load is generated from the 
emission surface of GaAs crystal and 1W from its edge. 

HEAT LOAD DUE TO DIELECTRIC LOSS 
GaAs experiences a dielectric loss (independent of the 

doping level) when the RF field penetrates into the 
crystal. The power loss is 

dxxEAP ∫ ⋅⋅⋅⋅=
2

12)(
ε
εεω

(2) 

A is area and d is the thickness of GaAs surface. E is 
the electrical field, ω is the frequency of the field.  ε1 /ε2 
is the loss tangent of GaAs. There also is a magnetic 
component to the power loss, but it is much smaller than 
the electric part and can be neglected. The electrical field 
drops exponential with the depth: 

δ
x

eExE
−

= 0)( (3) 

With the peak field E0= 5 MV/m, 230mW of heat will 
be generated in the GaAS. the total heat load due to 
resistive and dielectric losses in GaAs is 1.46W at 
5MV/m. The Q will drop to 1.8E8, which matches the test 
results well. 

IMPROVED NIOBIUM PLUG 
The model shows that a large part of the heat load 

comes from the edge of GaAs crystal. The plug therefore 
can be improved by shielding the crystal’s edges from the 
RF fields. In our new design, the GaAs crystal is recessed 
into the niobium plug (Figure 1). The recess was 
machined into the plug’s surface by EDM. We attached 
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the GaAs crystal to the plug with a small amount of 
Indium solder, carefully limiting it to the back side of the 
crystal so that no indium is exposed to the RF field. 

Because of machining tolerances, there is a small gap 
remaining between the edge of the crystal and the 
niobium. Depending on the gap’s size, a magnetic field 
exists there and generates heat. The simulation estimated 
the heat load due to the machine tolerance. We found that 
the best methods was first to cut the GaAs crystal and 
then machine the recess to match the crystal size. This 
way the gap can be as small as 200 μm and the Q can 
reach 6*108. 

SIMULATION OF THE THERMAL FLOW 
For the SRF gun, the gradient at the cathode is limited 

by the superconductor quench around the cathode and the 
gun’s equator. The cathode’s emission surface has a peak 
electric field that generates the heat load on the 
photocathode, as we have discussed earlier. The heat from 
the cathode flows to the Nb plug, should the plug’s 
temperature rise above the critical temperature, Q will 
drop and the gun will be quenched. 

 
Figure 4: Temperature distribution at 5 MV/m, calculated 
with ANSYS. The picture shows the cavity walls (blue), 
the tip of the plug (yellow) and the GaAs crystal 
(orange/red). 

Our calculations showed that the power absorbed in the 
GaAs crystal dominates the heat load. Accordingly, the 
plug must be cooled sufficiently. The path length from the 
cathode to the liquid helium is about 1 cm. We undertook 
a thermal finite element analysis (FEA) using 
ANSYS10.0 to evaluate the relationship between the 
thermal flow to plug and the gun’s geometry. The mode 
of gun shows on Figure 4. 

 Since the RF loss on the cavity walls is 7% of it loss in 
the GaAs crystal, we ignored the former in the simulation. 
The heat load from the GaAs crystal depends on the 
stored energy in RF field. The FEA model included the 
cathode, half of the SRF cavity, and the geometry of the 
cathode’s socket geometry. A mechanical clamp pressed 
the cathode plug against the cavity, we modelled the 
thermal contact resistance between the cathode and the 
cavity, assuming a pressure of 10 psi on the contact 
surface. 

 
Figure 5: The GaAs crystal temperature simulation with 
two kind of plug designing.  

Figure 5 shows at a temperature of 4K, the original plug 
design will quench when the cathode above a 6 MV/m 
peak field. The new, recessed cathode plug can operate up 
to 13MV/m, which is the design gradient for this 
experiment.We consider that for higher gradients a gun 
with a choke structure should be used, it allows the 
cathode to reach at higher temperatures and be cooled 
with liquid nitrogen. 

CONCLUSIONS 
A GaAs polarized photocathode can be used in the 

superconductor RF environment and the 2K test show the 
GaAs will generate the heat from the RF field. The heat 
load from the cathode reflects a combination of doping 
and dielectric heat load. Our model shows that heavy 
doping generates much more heat than does dielectric 
tangent loss. We conclude that to keep the gun operation 
in high Q, we must assure that we shield the sides of the 
bulk crystal from the RF field when designing the recess 
holder in which to place the photocathode. For a low-
current plug gun, the quench will occur at the cavity’s 
wall around the cathode. Quenching limits the gun’s peak 
electrical field. 
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