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Abstract

The presence of an electron cloud in an accelerator gen-
erates a number of interesting phenomena. In addition to
electron-driven beam instabilities, the electron “pinch” oc-
curring during a beam-bunch passage gives rise to a highly
nonlinear force experienced by individual beam particles.
A simple 1-dimensional model for the effect of the electron
pinch on the beam reveals a surprisingly rich dynamics. We
present the model and discuss simulation results.

INTRODUCTION
The interaction of the electron cloud in a synchrotron

with the passing beam creates a rich jungle of phenom-
ena. The electron-driven instabilities have received full
attention as the time scale of their appearance is fast. It
has, however, been recently recognized that even the stable
dynamics of the coupled system bunched beam / electron
cloud, can originate a complex beam dynamics leading to
phenomena of periodic resonance crossing [1]. The time
scale of these phenomena is much longer. Reference [2]
has studied in detail the “pinch” dynamics of the electrons
during the passage of a bunched proton beam. Under the
action of the proton Coulomb field, the electrons undergo
a pinch which creates a complex structure of “rings”. This
structure weakly feeds back onto the tunes of the proton
beam according to the actual location of these particles
in the bunch frame. The global effect is an induced peri-
odic tune modulation leading to possible resonance cross-
ing. As shown in Ref. [2], this phenomenon closely resem-
bles that encountered in the case of a stored high intensity
bunched beam, where the periodic tune modulation is due
to space charge [3]. The challenge in predicting the evo-
lution of the proton bunch lies in the slowness of the full
phenomena. The periodic crossing of a resonance creates
a very slow beam diffusion which can be detected only on
a long time scale (hundreds of synchrotron oscillations).
This diffusion-generating mechanism is highly relevant for
a collider like the LHC, but also in the case of space-charge
driven periodic resonance crossing, as found for SIS100
[4]. The understanding of this coupled beam dynamics is
essential for very long term prediction. A suitable approach
uses a frozen model. Here the effect of the pinch is modeled
with a simplified EC structure, where the structure of the
pinch is kept the same from turn to turn while allowing the
proton bunch dynamics to evolve. The main approximation
made in Ref. [2] was to consider the EC pinch in an axis-
symmetric approximation. Although the approximation al-
lowed an estimate for accelerators like LHC, RHIC, and
SIS100 (for the latter with space charge), a discussion of
the underlying nonlinear dynamics was left unexplored. In
this paper we extend a simplified model, earlier presented

in Ref. [5], and discuss its dynamical properties, gaining
some insight into the complex dynamics governing a “res-
onance scattering” regime induced by the electron cloud.

THE ELECTRON CLOUD STRIPE MAP
We here consider the beam dynamics induced by the

pinched electron cloud for protons moving only in one
plane, so that the system becomes 1-dimensional. We also
assume that the field created by the pinched electrons can,
locally in z, be approximated by the one of an ideal pla-
nar structure consisting of 2 infinitely wide parallel planes
of negligible thickness, and located at a vertical distance
yEC = ±R1 from the axis. The Coulomb field produced
by this system is E = 0 between the two planes, and
E = ±const. outside them (Fig. 1). The quantity R1 mod-

Figure 1: Schematic of the 1-dimensional model of the
electron cloud pinch.

els the extent of the pinch: at the beginning of the bunch
R1 = 0 and later along the bunch it grows according to
the beam and EC characteristics as discussed in Ref. [2],
typically R1 = R′

1(z − zp), where zp is the bunch longitu-
dinal location at which the pinch starts. Consider a proton
located at the head of a bunch (z < 0) near zp. This pro-
ton will experience the force from the EC plane located at
y = 0. The one turn map expressed in Courant-Snyder
(CS) coordinates of the system pinched EC + accelerator is
then(

ŷ1
ŷ′1

)
=

(
cosω sinω

− sinω cosω

)(
ŷ0
ŷ′0 + F(y0)

)
(1)

with ω = 2πQy the phase advance, and F(ŷ0) =

sign(ŷ0)F̂ representing the Coulomb field generated by the
plane of electrons located at ŷ = 0. The function “sign” in-
corporates the discontinuity of the Coulomb electric field
generated by the electrons. With the change of variable
y = (ŷ + iŷ′)/F̂ , equation (1) becomes

y1 = e−iω(y0 + is0), (2)

where s0 = sign[Re(y0)] = ±1 is the normalized force.
Note that in the map (2) the localization of the electron
cloud is responsible of the creation of several structure res-
onances. Differently from an axis-symmetric particle dis-
tribution, in this model the Coulomb force does not scale
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as 1/y, but similarly to the space charge the force is anti-
symmetric with regard to the exchange y ↔ −y. The
repeated application of the map (2) creates, for Qy close
some structure resonance Qr = m/n, a set of n fixed
points according to the distance δ from the resonance. The
phase advance is ω = 2πm/n+ δ. For m = 1 one of these

n fixed points, we call it y(n)
0 , has the location

y
(n)
0 =

ei[−π/2−ω/2]

2 tan(nδ/4) sin(ω/2)
. (3)

The other (n−1) fixed points are found by repeatedly map-

ping y
(n)
0 with (2). In Fig. 2 we show the phase space
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Figure 2: Phase space structure for Qr = 1/4 (left) and
Qr = 1/6 (right). In both pictures δ = −0.0003 and R̂1 =
0.

plot for Qy close to the resonances at Qr = 1/4 (left),
and Qr = 1/6 (right). The distance from the resonance
in both pictures is δ = −0.0003. Note that the num-
ber of islands is even because of the antisymmetric char-
acter of the Coulomb force created by our model of EC:
one can prove that the orbit created by an initial point
y0 → O(y0) and the orbit created by the initial point
exp(iπ)y0 → O(exp(iπ)y0) are the same except for a ro-
tation by π. This property, which stems from the symmetry
of the map (2), is responsible for creating island chains that
are multiples of 2. For example, for Qr = 1/3 this prop-
erty implies that the real resonance is Qr = 2/6 and that
the phase space will be formed by 2 disconnected sets of 3-
islands. From (2) it is easy to show that the secondary tune
is ωsec = δ, and, observing that the islands are circular, the
island size, i.e. its radius, is

S
(n)
0 =

1

2| tan(nδ/4)| . (4)

When the proton particle is located at a different (later)
longitudinal position, the EC structure of the pinch is met
at a different stage of its development. In the electron cloud
stripe map this is included by changing the EC force in (1)
to F(ŷ0) = F̂ sign[Re(ŷ0)]Θ(|ŷ0|/R̂1 − 1). This expres-
sion takes into account that inside the two EC planes the
force is zero and outside of them the force is constant. In
Fig. 3 we show the effect of the 2 EC planes when R̂1 is
1/8-th of the island size in Fig. 2. The green lines indi-
cate ±R̂1, i.e. the locations of the EC planes. Although
the region between the green lines has no electric field, the
dynamics created by the new force F brings the particles

into and out of this field-free region. The integrated effect
results in the creation of a new island chain as visible in
Fig. 3. The size of these new islands is R̂1.
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Figure 3: Phase space for Qr = 1/4 (left) and 1/6 (right).
The distance of the EC planes, R̂1, is 1/8th of the island
radius in Fig. 2, and δ = −0.0003.

RESONANCE CROSSING
At the start of the pinch no electrons are accumulated

and the strength of the electric field is F̂ = 0. Dur-
ing the build up of the pinch F̂ (< 0) grows along the
bunch, from zero up to a maximum value, and then it re-
mains constant (in this modeling). Let us assume that
F̂ ′ = dF̂ /dN = const., with N denoting the turn number.
Due to the increase of F̂ the fixed points created by a struc-
ture resonance Qr = m/n migrate outwards according to

d|ŷ(n)
0 |

dN
=

F̂ ′

2 tan(nδ/4) sin(ω/2)
. (5)

Here ŷ = ŷ + iŷ′ = yF̂ . The moving islands crossing a
particles orbit will trap the latter if: The speed of rotation of
the particle in the islands is faster than the speed of escape
of the fixed points. The maximum speed of a particle in the
islands is

vp = |ωsec|Ŝ(n)
0 =

|δ|
2

F̂

tan(nδ/4)
. (6)

Detrapping [6] occurs if the opposite condition is fulfilled,
i.e. if vp < d|ŷ(n)

0 |/dN . The transition can be character-
ized by a dimensionless parameter T defined as the ratio of
these two speeds

T =
|dŷ(n)

0 |
dN

1

|ωsec|Ŝ(n)
0

. (7)

The condition of detrapping reads T > 1. T can be also
interpreted as an adiabaticity parameter: for T � 1 the
motion of the fixed points is adiabatic with respect to the
motion in the islands. The condition T = 1 corresponds
to an EC strength of F̂t = F̂ ′/[|δ| sin(ω/2)]. With F̂ ′ =
dF̂ /dN = const. the previous formula yields the number
of turns N at which the transition takes place: ΔNt =
1/[|δ| sin(ω/2)]. At this transition instant the fixed points

are located at |ŷ(n)
c | = F̂ ′/{2|δ|[tan(nδ/4) sin2(ω/2)]}.

If beam particles have amplitudes larger than | ŷ(n)
c | they

will be trapped, otherwise scattered [7, 8]. However, when
ŷ
(n)
c is at T = 1, the part of the island closer to the origin
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can still trap beam particles. Therefore, trapping does never
occur only for those particles with |ŷ| < |ŷdt|, where

|ŷdt| = |ŷ(n)
c |[1− sin(ω/2)]. (8)

For those trapped their maximum amplitude is | ŷmax| =
|F̂maxy

(n)
c |. In Fig. 4 we show the benchmarking of (8)

with the map (1).
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Figure 4: Benchmarking of (8). For particles with | ŷdt| >
|ŷ0| trapping does not take place and their amplitude is scat-
tered. For |ŷdt| < |ŷ0| particles are trapped and reach
|ŷmax|. The colors refer to the 4th (red) and 6th order
(green) resonances.

SCATTERING REGIME
From (8) trapped particles should have an amplitude

larger than |ŷdt| ∝ F̂ ′/δ. F̂ ′ depends on the synchrotron
tune, on the longitudinal particle amplitude and on the ex-
tent of the pinch along the longitudinal axis (z). As the
latter is much shorter than the bunch length it is likely
that the scattering regime is dominating the EC periodic
crossing dynamics. We here introduce an analysis of the
scattering regime. The beam dynamics in the scattering
regime (T > 1) is characterized by the absence of trap-
ping [9, 10, 11]. This means that when the resonant orbit
crosses the particle orbit, the CS invariant of the particle is
subjected to a random kick of maximum amplitude equal to
the island size. If we characterize the particle via its radius
r0 (proportional to the root square of the action), we can
represent the scattering process via the map

r1 = r0 + ξ
π

n
r0, (9)

where r1 is the new particle radius after one crossing. In
(9) the quantity π/nr0 is the radius of an island, and ξ is
a random variable of standard deviation σξ , the value of
which incorporates the effectiveness of the island to scat-
ter the particle radius (invariant) at r0. For T � 1 the
islands cross the particle orbit very fast producing a small
scattering, hence σξ → 0. The general dependence is a
complex function of T , like ξ = ξ(1/T ). However, as a
first approach for understanding the problem, we assume
ξ to be independent of T : this is the case when 1/T is
close to 1, as there the scattering involves the full island.
Equation (9) then describes then the so called Geometric
Brownian Motion, and is equivalent to the stochastic equa-
tion dr = σξrdW , where W is a Wiener process. The
correspondent Fokker-Planck equation reads

∂f

∂t
=

1

2
σ2
ξ

∂2

∂r2
(r2f), (10)

where f is the beam distribution. If the beam pipe is taken
at rp we can define the rescaled quantities (Z, τ) via r =
rpZ , and t = (2σ−2

ξ )τ . By taking an initially uniform
beam distribution in Courant-Snyder coordinates (ŷ, ŷ ′) of
radius A, we integrate over the boundary 0 < Z < a(< 1),
with a = A/rp and obtain

f(Z, τ) = 4
√
a

5π

∫∞
0

e−(β2+1/4)τ×
sin(−β ln a)+(2β/5) cos(−β lna)

1+(2β/5)2
sin(β lnZ)

Z3/2 dβ.

(11)
The integration of f(Z, τ) over Z yields the beam survival
N(τ) =

∫ 1

0 f(Z, τ)dZ . Figure 5 show a benchmarking of
the solution (11) with the numerical simulation of (9).
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Figure 5: Evolution of a KV beam distribution driven by
geometric Brownian motion from simulation (black curve),
and the (numerically integrated) analytic solution (red).
The pictures a), b), c), and d) are obtained at different in-
stants during the beam evolution. The simulation used 10 4

macro-particles. In a) the theoretical initial value is not 1,
but 0.95 due to the approximations of the numerical inte-
gration.
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