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Abstract 
The results of electron dynamics numeral simulation in 

an unhomogeneous disk-loaded waveguide, which is used 
in the S-band linac, with average power of an accelerated 
beam of 10 kW, are presented. Taking into account the 
self-fields of beam radiation, two approaches are 
considered: the first method is an estimative based on the 
power diffusion equation; the second one is based on self-
consistent equations of field excitation and particles 
motion. The self-consistent approach showed the presence 
of substantial phase slipping of particles in the 
homogeneous part of the rf structure, conditioned by the 
reactive beam loading. 

INTRODUCTION 
The low-energy rf linac for technology applications for 

which we study beam dynamics consists of the elements 
showed in Fig. 1. 

 
Figure 1: A linac outline: electron gun (1), magnetic 
lenses (2), magnetic screen (3), solenoid (4), accelerating 
section (5), quadrupole lenses (6), beamline (7). 

The accelerating section is a piece-wise 
unhomogeneous disk-loaded waveguide, which consists 
of a buncher conjugated with a homogeneous constant-
impedance accelerating part of this section. The buncher 
includes 15 cells with variable phase velocity, β, as 
shown in Tab.1.  

Table 1: Structure Parameters 

Cell 
Number 

Iris Radius, 
cm 

Length, cm β 

1 – 6 2.165 0 – 10.3 0.6998 

7 2.165 10.3 – 12.3 0.7494 

8 2.11 12.3 – 14.6 0.8494 

9 – 13 2.035 14.6 – 26.6 0.8994 

14 2.035 26.6 – 29.1 0.9244 

15 1.715 29.1 – 31.7 0.9741 

16 – 101 1.5 31.7 – 263.5 1 

 
The regular accelerating part consists of 86 cells with 

 

phase velocity equals to the velocity of light, c. Phase 
advance per cell is π/2 at the operating frequency 
2797 MHz. A 80 kV diode electron gun provides beam 
current up to 1.5 A per pulse. The focusing system 
includes 2 lenses, a solenoid and one quadrupole duplet. 

THE POWER DIFFUSION TECHNIQUE  
The equation of power diffusion often used to calculate 

fields induced by an ultrarelativistic beam [1,2] has the 
form 
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where α is the attenuation constant, Pr is the power 
induced by a beam, I is the beam current averaged over an 
RF period, Er is the longitudinal component of the 
induced electric field.  

To use the well-known code PARMELA that calculates 
motion of particles at given fields it is required to make 
some assumptions, which ensue from the power diffusion 
approximation: i) the beam is a sequence of point 
bunches; ii) beam particles move synchronously with the 
induced wave at the maximum of decelerating field. By 
using ( )2

r r serP E R z=  (where Rser is the serial 

impedance) the induced field can be found from Eq.(1). 
The total accelerating field of a fundamental space 
harmonic is given by  

( ) ( ) ( ) ( )0 0 0, cos ,tot rE z t E z z t E zϕ= − , (2) 

where Е0(z) is the field from an rf source; t0 is the entry 
time of a particle into a accelerating section. The phase of 
a particle with respect to wave phase is defined as 
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where νph is the wave phase velocity, 0( , )t z tΛ  is the 

particle Lagrangian time, ω is the angular frequency. 
To analyze phase motion of a beam, we use the phase 

of the first Fourier harmonic of current, ( )zψ , which is 
defined from the following expression: 
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where N is the number of particles in a bunch. 
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The codes, POISSON/SUPERFISH is used to calculate 
the characteristics of the optical system. The thermionic 
gun with current of 1.5 A is simulated by EGUN code. 

The distribution of accelerating field is plotted in Fig.2, 
for both the field loaded by a current of 1 A and unloaded 
one. It is obvious that the field induced by the beam 
makes considerable contribution into the total field in the 
acceleration part of the section.  

 

Figure 2: Distribution of the total field along the structure: 
current is 1А (solid line), no load (dashed line). 

The result of the bunching is shown in Fig. 3. The rms 
phase extent (for 70 % of particles) equals 60 degrees. 
There is an appreciable amount of low-energy particles 
(lower than 300 keV) which have not been captured by a 
traveling wave. 

 

Figure 3: The phase–energy distribution of particles at the 
buncher exit (z1=31.7 cm). 

The phase of the first Fourier harmonic of the beam 
current with respect to the travelling wave phase will be 
further referred to as the phase of a bunch. The 
dependence of the phase of a bunch on longitudinal 
coordinates is shown in Fig. 4.  

 

Figure 4: The bunch phase versus longitudinal coordinate. 

As is evident from this dependence there are the phase 
oscillations of bunches in the buncher part of the section 
(z from 0 to 31.7 cm) that show particle bunching. 
Considerable phase slipping is observed in initial cells of 
uniform accelerating part of the section (z from 31.7 to 

111.7 cm) conditioned by accelerating up to ultra 
relativistic velocities. Actually the bunch phase remains 
constant and is equal to approximately -23 degrees in the 
second part of the accelerating structure (z from 111.7 to 
263.5 cm).  

According to the equation of power diffusion the bunch 
phase should be zero. Thus, the law of conservation of 
power balance is violated and for more appropriate 
simulation of acceleration we need the method taking into 
account self-consistent variation both of the amplitude 
and the phase of the first Fourier harmonic of beam 
current along accelerator. 

THE SELF-CONSISTENT DYNAMICS 
In this section we use the self-consistent technique that 

incorporates PARMELA to simulate bunching and 
acceleration [3]. This technique is based on unsteady 
theory of excitation of resonators and inhomogeneous 
traveling wave accelerating structures. According to this 
approach an electric field of traveling wave is written as 
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Here the slowly varying amplitude ( ),C t z  and the phase 

( ),t zϕ  obey excitation equations: 
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where vg is group velocity. 

To calculate the eigen-fields ( )0E r  and 

electrodynamic characteristics of axially-symmetrical rf 
structures (Rs, vg) we use the SUPERFISH code. A 
motion of charged particles at each integration time step 
is simulated by the PARMELA code. Let us consider 
steady-state acceleration characteristics. The distribution 
of the fundamental space harmonic of the total field along 
the structure axis is presented in Fig. 5. One can see that 
the beam loaded field decreases less than the field, which 
was calculated by the power diffusion technique. This 
difference is caused by two factors: i) insufficiently in-
phase superposition of fields induced by the particles of 
bunches of finite phase width; ii) phase slipping of the 

Proceedings of IPAC’10, Kyoto, Japan TUPEA018

05 Beam Dynamics and Electromagnetic Fields

D04 High Intensity in Linear Accelerators - Incoherent Instabilities, Space Char 1367



first Fourier harmonic with respect to the accelerating 
wave phase [4], as shown in Fig. 6. 

 
Figure 5: The distribution of the total field along the rf 
structure: solid) self–consistent approach; dashed) power 
diffusion method. 

 

 
Figure 6: The bunch phase versus longitudinal coordinate. 

From Fig.6 one can see that in spite of ultrarelativistic 
particle velocity in the accelerating part of the section (z 
from 111.7 to 263.5 cm) there is strong shift of the bunch 
phase, which approximates to 40 degrees in absolute 
value. It can be treated as changing of the phase velocity 
of accelerating wave due to reactive beam loading, which 
is described by the Eq. (7). This equation shows that 
derivation of the wave phase is inverse to the wave 
amplitude. Therefore, the less is the amplitude the more 
phase slipping might be observed.  

It should be noted that the phase–energy distribution of 
particles at the buncher exit (z1=31.7 cm) is almost the 
same as the distribution obtained by the power diffusion 
technique (Fig.3), because beam loading could be 
neglected in the buncher.  

The next Figs.7 (a, b) demonstrate the strong phase 
motion of the bunch in the accelerating part of the section 
due to the reactive beam loading. One can see, that the 
head of the bunch located near the wave crest (the cross-
section z2=147.6 cm, Fig. 7a) is accelerating and 
significantly slipping off crest (Fig.7b), that results in 
decreasing beam energy and increasing energy spread.  

 
а) 

 
b) 

Figure 7: The phase–energy distribution of particles in: a) 
the middle of the accelerating part (z1=147.6 cm); b) the 
section exit (z2=263.5 cm).  

Finally, it should be noted that energy spread of the 
accelerated beam, which is obtained by solving the self-
consistent problem, is 7% for 70% of the bunch particles. 
That is 2% more than the value of the energy spread 
calculated by the diffusion technique.  

CONCLUSION 
The numerical simulation of steady-state dynamics of 

an intensive electron beam in the disk-loaded waveguide 
consisting of the buncher with variable phase velocity 
conjugated with the acceleration part of the section 
having constant phase velocity was carried out. We 
considered two approaches based on: i) the equation of 
power diffusion; ii) the self-consistent unsteady-state 
equations of field excitation and particle motion. It has 
been shown that for estimation of acceleration parameters 
the diffusion technique can be used, if the value of 
reactive current loading is not significant. The simulation 
of a self-consistent problem has shown that there is 
considerable phase slipping of ultrarelativistic particles in 
homogeneous part of the accelerating structure. That is 
caused by variation of wave phase velocity due to reactive 
beam loading. The disadvantage of the accelerating 
structure integrated with the buncher is the impossibility 
of external phasing. Therefore the optimization of self-
consistent longitudinal beam dynamics in such type of 
structures is required.  
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