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Abstract 
The eigenvector method with constraints(EVC method) 

is successfully applied to orbit correction for the compact 

ERL. Orbit distortion generated by the position error of 

eight main superconducting cavities is well corrected by 

the EVC method. Exact correction of local orbits can be 

achieved by the constraint conditions without using many 

eigenvectors that may cause local orbit distortion in the 

regions without any BPM and hence emittance growth. 

This method can be highly useful for orbit correction and 

stabilization in future ERL-based light sources. 

INTRODUCTION 

Orbit correction in an ERL is more complicated than 
those of an ordinary linac and a transport line, because the 
ERL beam passes a long section containing main 
superconducting cavities at least two times with different 
energies. A corrector in this section gives a different kick 
angle to the beam in a different turn. Therefore a 
sophisticated orbit correction method is required for ERLs 
The eigenvector method with constraints (hereafter called 
the EVC method)[1] can perform global orbit correction 
under constraint conditions and has been proposed for 
uniting global and exact local orbit corrections mainly in 
storage-ring based SR sources. In fact this method was 
successfully applied to orbit correction in the PF ring and 
PF-AR[2]. In this paper, we present the EVC method for 
ERLs and simulation results of orbit correction for the 
compact ERL. 

EIGENVECTOR METHOD WITH 

CONSTRAINTS 

Principle 

When the vector of a distorted orbit   
 

x  at beam position 

monitors(BPMs) is corrected by corrector kick angles   
 

 , 

the residual orbit 
 

  is expressed as 
 

 = R
 

 +
 

x .     (1) 

Here the dimensions of the vectors 
 

x  and 
 

  are M and N 

and R is the M  N response matrix. Now constraint 

conditions are given by 

  
Ci

T
+ zi = 0 ( i = 1, 2 , Nc ) ,  (2) 

where the superscript T stands for the transposed matrix 

or vector and zi is a parameter related to the kick angles.  

Nc and 
 

C i
T

are the number of the constraints and the 

response matrix between 
 

  and zi. 

The norm of 
 

  should be minimized or sufficiently 

small under the constraint conditions of Eq. (2) by 

introducing the following function of S (Lagrange’s 

method of indeterminate multipliers). 

S =
1

2
R + x( )

2

+ μ i
i=1
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Derivatives of the function S with respect to all the 

elements of   
 

  and 
  

 
μ  are set to zero and the following 

equations are obtained. 

A + RT x +CT μ = 0     (4) 

C + z = 0      (5) 

where  

A = RT R      (6) 
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Eq. (5) is identical with the constraint conditions of Eq. 

(2). The solutions of 
  

 
μ  and   

 

  are derived from Eqs. (4) 

and (5). 

μ = P 1 z P 1CA 1RT x    (9) 

= Bx Dz      (10) 

where  

B = ( A 1
+ A 1CT P 1CA 1 )RT    (11) 

D = A 1CT P 1
     (12) 

P = CA 1CT
     (13) 

The matrix A
-1 

is a generalized inverse matrix defined by 

A 1 =
vi vi

T

ii=1

NV

Nv N( ) .   (14)  

Here i ( 0) and 
  

 
v i  are the i-th largest eigenvalue and its 

eigenvector of the matrix A. For i 0, 1/ i in Eq. (14) is 

often replaced with zero to avoid very large kick angles 

and Nv is usually unequal to N. The condition of Nv  Nc is 

required for the existence of the inverse matrix P
-1

. More 

details of the EVC method are described in ref. [1]. 

If   
 

z  is taken as the electron (or photon) beam positions 

measured at arbitrarily selected BPMs (or photon BPMs) 

and C as the corresponding response matrix, the beam 

positions at the selected BPMs are fixed at zero by this 

corection. For the electron beam and BPMs, Eq. (10) can 

be rewritten in a simplified form. 
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= Gx  ,     (15) 

where G is an N x M matrix. 

Response Matrix for ERLs 

The EVC method can be applied to ERLs only by 

replacing the response matrix. Here, for a 1-loop ERL, 

number of beam positions monitored at all the BPMs is M 

and number of all the correctors are N. The betatron 

functions and phases at the i-th position monitored by its 

corresponding BPM and the j-th corrector are ( i, i) and 

( j, j), respectively. The response matrix element Rij 

between the i-th position and the kick angle of the j-th 

corrector is usually expressed by 

Rij =
p j

pi
i j sin i j( ) , i > j  (16) 

where pi and pj are the beam momenta at the i-th position 

and the j-th corrector, respectively. In the 2
nd

 turn, the j-th 

corrector that the beam passes two times provides the 

(j+L)-th kick as well as the j-th kick. Here L is the total 

number of the correctors in the ERL loop (not including 

the injector and extractor sections). In this case, the 

response matrix element Rij is given by 

Rij =
p j

pi
i j sin i j( )

+
p j+L

pi
i j+L sin i j+L( ) ,

i j+L > j

  (17) 

Here pj+L, j+L and j+L are the beam momentum and the 

betatron function and phase at the j-th corrector in the 

second turn. The magnetic field integral of the corrector is 

often a better parameter than the kick angle because it 

does not depend on the beam momentum. When the 

magnetic field integral is used in place of the kick angle, 

the elements of the response matrix corresponding to Eqs. 

(16) and (17) are given by 

Rij = e
i j

pi p j

sin i j( ) , i > j   (18) 

and 

Rij = e
i j

pi p j

sin i j( )

+ e i j+L

pi p j+L

sin i j+L( ) , i j +L > j

 (19) 

where e is the electron charge. 

APPLICATION TO THE COMPACT ERL 

The EVC method is applied to orbit correction in the 

compact ERL here. Layout of the compact ERL[3] 

including BPMs(BPM01-BPM23) and correctors(COR01 

-COR19) is shown in Fig. 1. Twenty-three BPMs provides 

28 beam positions(M=28) because five(BPM01-BPM05) 

of them between the merger and the extractor monitor two 

beam positions in the 1
st
 and 2

nd
 turns. Similarly 

five(COR01-COR05) of the nineteen correctors(N=19) 

give two kicks to the beam. The beam orbits are simulated 

by elegant[4] for the magnetic field integrals of the 

correctors obtained by the EVC program. The orbit 

distortion to be corrected by the EVC method is generated 

by position error of 1 mm for the eight main SC cavities. 

We choose constraint conditions that the two positions at 

BPM13 and BPM14 are zero, because the beam in the 

long straight section between the two BPMs should be 

particularly corrected and stabilized for user experiments. 

Figure 2 shows a horizontal orbit distorted by the 

horizontal cavity position error of 1 mm in LE mode. The 

maximum positions are 34.8 and 26.6 mm and the 

RMS(root mean square) positions 8.43 and 7.85 mm for 

all the elements and BPMs, respectively. The orbit is 

corrected by the EVC method with the eigenvector 

number Nv=3 to 19. Figure 3a and 3b show dependence of 

RMS and maximum positions for all the elements and 

BPMs on the eigenvector number Nv. The RMS and 

maximum positions for all the BPMs become small as the 

eigenvector number goes up. On the other hand, the RMS 

and maximum positions for all the elements stop 

decreasing at Nv=6 or 7 and start increasing at Nv=8. This 

reason is explained by using Fig. 4. When the eigenvector 

number changes from 7 to 8, the orbit shape is 

significantly changed around the cavities as shown in Fig. 

4. Although this change further reduces the orbit 

distortion at the BPMs, it increases the orbit distortion 

around the cavities where there is no BPM. This orbit 

shape change also degrades the emittance as shown in Fig. 

5. The emittance is substantially increased at the cavities 

by the chromatic effects for the corrected orbit with Nv  8, 

while being increased at the quadrupole magnets for 

uncorrected orbit[5]. In that point, the orbit correction 

with Nv  7 is better than that with Nv  8. In addition, the 

RMS and maximum field integrals of the correctors are 

smaller than those with Nv  8 as shown in Fig. 6. 
 

 

Figure 1: Layout of a 1-loop compact ERL. 
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Figure 2: Horizontal orbit distorted by the cavity 

alignment error of 1 mm in LE mode. The solid circles 

indicate 28 beam positions at the BPMs. 
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Figure 3: Dependence of (a) RMS and (b) maximum 

horizontal positions for all the elements and BPMs on 

number of eigenvectors used for orbit correction by the 

EVC method. 
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Figure 4: Horizontal orbits uncorrected and corrected by 

the EVC method with the eigenvector number Nv=3, 7, 8 

and 19. The solid circles and crosses indicate the positions 

at all the BPMs. 
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Figure 5: Horizontal normalized emittances in LE mode 

for orbits uncorrected and corrected by the EVC method 

with the eigenvector number Nv=3, 7, 8 and 19. 

 

The RMS beam positions of the EVC method for all the 

elements and BPMs are equal within 5 % to those of the 

ordinary eigenvector method without constraints for Nv  

3. On the other hand, the beam positions at the two 

selected BPMs, BPM13 and BPM14, are much better 

corrected by using the constraint conditions as shown in 

Fig. 7. This is a great advantage of the EVC method. 

Exact orbit correction at locations where the orbit 

accuracy or stability is especially required can be 

achieved by the EVC method even if a large number of 

eigenvectors, which may cause local orbit distortion 

and/or emittance increase, is not used. 
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Figure 6: Dependence of RMS and maximum field 

integral of the correctors on number of eigenvectors. 
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Figure 6: RMS beam positions for the two BPMs (BPM13 

and BPM14) after orbit correction by the eigenvector 

method with and without constraints. 

SUMMARY AND CONCLUSIONS 

The eigenvector method with constraints successfully 

works for orbit correction of the compact ERL. The orbit 

distortion due to the cavity position error is globally 

reduced and exact correction of the local orbits is well 

achieved by the constraint conditions. This method can 

flexibly control orbits by using constraint conditions and 

adjusting the eigenvector number and it is suitable for 

orbit correction and stabilization in future ERL-based 

light sources that have many light source points. 
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