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INTRODUCTION

In accelerator design, there is often a need to evaluate
the threshold to the (longitudinal) microwave instability
for a bunched beam in an electron storage ring. Several
computational tools are available that allow us, once given
the wakefield representing a ring, to numerically find the
threshold current and to simulate the development of the in-
stability. In this work, we present results of computer sim-
ulations using two codes recently developed at the SLAC
National Accelerator Laboratory: a Vlasov-Fokker-Planck
(VFP) solver based on an algorithm by Warnock and El-
lison [1], and a program that finds the threshold from the
linearized Vlasov equation.

We apply the programs to find the instability threshold
for three models of ring impedances: that of a Q = 1 res-
onator, of shielded coherent synchrotron radiation (CSR),
and of a resistive wall. The first example is well-behaved,
but the other two are singular wakes that need special care.
Note that similar numerical studies of the threshold of a
Q = 1 resonator wake have been performed by Oide and
Yokoya [2], and others [3]–[5]. We compare the results of
the two programs and discuss their respective capabilities
and limitations. In this report we assume the slippage fac-
tor η is always positive. We work in Gaussian units.

VLASOV-FOKKER-PLANCK (VFP) CODE

Let us consider the longitudinal motion of a bunched
beam in an electron storage ring. When there is a collective
force induced by the bunch distribution λ(q) through the
wakefield w(q), the evolution of the beam density distribu-
tion (in longitudinal phase space) ψ(θ, q, p) is governed by
the Vlasov-Fokker-Planck (VFP) equation

∂ψ

∂θ
− {H,ψ} = 2β

∂

∂p
(pψ +

∂ψ

∂p
), (1)

where {} indicates a Poisson bracket. The Hamiltonian

H =
1

2
(q2 + p2)− I

∫ q

−∞
dq′′

∫ ∞

−∞
dq′λ(q′)w(q′′ − q′),

(2)
with λ(q) =

∫∞
−∞ ψ(q, p)dp. The independent variable

θ = ωst, with ωs the (nominal) synchrotron frequency
and t the time. We use a normalized coordinate system:
q = z/σz0, where z is longitudinal position, with the
positive z-axis pointing to the front (the direction of mo-
tion), and σz0 is nominal (zero current) rms bunch length;
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p = −δ/σδ0, where δ is relative energy deviation and σδ0

is nominal energy spread. We define normalized current as

I =
reNb

2πνsγσδ0
, (3)

with re is the classical electron radius,Nb the bunch popu-
lation, νs the nominal synchrotron tune, and γ the Lorentz
energy factor. The terms on the right of Eq. 1 are the syn-
chrotron radiation damping and quantum diffusion terms;
here β = 1/ωsτd, with τd the longitudinal damping time.
Note that the wake w(Δq)—with dimension of inverse
length—represents the effect of the entire ring, that argu-
ment Δq > 0 implies the test particle is ahead of the driv-
ing charge, and that w > 0 indicates energy loss.

To solve Eq. 1, Warnock and Ellison developed a robust
algorithm based on the Perron-Frobenius operator, with the
solution obtained on a regular grid in longitudinal phase
space [1]. We have rewritten their code in C++, making
some improvements to their grid interpolation scheme, in
order to improve detection of the threshold to instability.
In a typical run for this report, the maximum of |q| and |p|
is 8, with 300 mesh points in each direction; the number of
time steps per synchrotron period is 1024, with a total run
lasting 400 synchrotron periods; the damping parameter is
taken to be small, β = 1.25×10−3. The program initializes
ψ(q) with the solution to the Haı̈ssinski equation.

LINEARIZED VLASOV (LV) CODE

The approach described in the previous section solves a
full VFP problem and for an unstable equilibrium allows
one to find the threshold to the instability as well as the
nonlinear evolution of beam phase space above threshold.
In cases where we only want to know the threshold cur-
rent, a linearized Vlasov (LV) analysis can be used. We
have developed a computer code that numerically solves
the LV problem. The method for finding the threshold
to instability in this case begins by finding the equilib-
rium density distribution, ψ0(q, p), through the solution
of the Haı̈ssinski equation. We linearize the Vlasov equa-
tion about this distribution, taking ψ(θ, q, p) = ψ0(q, p) +
ψ1(θ, q, p), and assuming that |ψ1| � |ψ0|. The linearized
Vlasov equation takes the form

∂ψ1

∂θ
− p

∂ψ1

∂q
+K0(q)

∂ψ1

∂p
+K1(θ, q)

∂ψ0

∂p
= 0,

K0(q) = q − I

∫ ∞

−∞
dq′dpψ0(q

′, p)w(q − q′), (4)

K1(θ, q) = −I
∫ ∞

−∞
dq′dpψ1(θ, q

′, p)w(q − q′).
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Eq. 4 is solved numerically on a mesh in q-p space, start-
ing from a randomly generated initial distribution function
ψ1. Typically the mesh, in each direction, spans ±6 and
contains ∼ 250–300 points. If the system is unstable, af-
ter a sufficient time the evolution becomes dominated by
the fastest exponentially growing mode. The growth rate Γ
of the instability is found numerically by fitting eΓθ to the
time evolution of the system. The code also computes the
phase portrait of the unstable mode. Typically we take 100
time steps per synchrotron period.

The numerical algorithm is implemented in Mathemat-
ica. The wake function in the Vlasov equation can be input
as an arbitrary Mathematica function, and includes prede-
fined resistive, inductive, and CSR wakes. The code was
tested on an SLC damping ring wake, and the results com-
pared well with results of other programs.

CALCULATIONS

Q = 1 Resonator Wake

TheQ = 1 resonator wake has often been used to model
the impedance of a ring. The resonator wake is non-zero
only for negative argument (the test particle behind the
driving charge); it is given by

w(q) =WH(−q) eΩq/2
(
cos

√
3Ωq/2 +

sin
√
3Ωq/2√
3

)
,

(5)
with parameters amplitude W and Ω ≡ ωrσz0/c, with ωr

the resonator frequency; hereH(x) is the unit step function
[H(x) = 1 for x > 0, = 0 for x < 0].

We have performed stability calculations for this model,
with Ω over the range [.25, 2.0]. Analysis shows that the
dynamics described by the Vlasov equation in this case,
and hence the threshold of the instability, depend only on
two dimensionless parameters,Ω and Sres = IW . In Fig. 1
we plot the resulting threshold value of Sres vs. Ω, where
the VFP results are given by blue symbols (that are joined
by straight lines), those of LV are in red (an error bar indi-
cates uncertainty in result). In general we see good agree-
ment between the results of the two methods, and also rea-
sonably good agreement when compared to the earlier re-
sults of Oide and Yokoya and others.

At low Ω the beam preferentially samples the capacitive
part of the impedance, at high Ω the inductive part. Thus
at e.g. Ω = 0.5 the bunch length of the Haı̈ssinski solution
at threshold (of the main part of the beam; the bunch here
has a long tail) is shorter than nominal, whereas at Ω = 2.0
it is longer. For Ω = 2.0 the bunch shape appears to be
approaching a high-Ω asymptotic limit, one that is not the
nominal Gaussian. If this assumption is correct, then the
asymptotic shape is given by the Haı̈ssinski solution for an
inductive wake, specif. the solution—that has unit area—to
λ′ = −qλ/(1 + Sresλ/Ω

2), with Sres/Ω
2 a constant. Per-

forming more VFP calculations for Ω = 2.25, 2.5, we find
that the threshold results (for Ω � 2.0) are reasonably con-
sistent with this assumption when taking Sres/Ω

2 = 6.7.
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Figure 1: For the Q = 1 resonator wake, threshold value
of Sres vs. resonator frequency Ω. Symbols give results of
the VFP solver (blue) and the LV code (red).

(Incidentally, note that the Boussard criterion [6], for the
resonator in the high-Ω regime, reads Sres/Ω

2 =
√
2π.)

CSR Wake

We consider the CSR wakefield generated by an electron
moving on a circular orbit with bending radius ρ in the mid-
dle of two parallel plates [7]. In the case of no shielding the
wake is non-zero only for positive q (i.e. the test particle
ahead of the driving charge); it is given by

w0(q) = − 4π

34/3
H(q)

ρ1/3

(qσz0)4/3
. (6)

This wake is singular and requires special care. In the simu-
lations, we obtain the bunch wake v ind by convoluting with
the bunch shape λ. For such a singular wake, however, we
integrate by parts and discard the boundary term; i.e. we
let the bunch wake vind(q) =

∫
s(q′)λ′(q − q′) dq′, where

s(q) =
∫ q

−∞ w(q′) dq′ and λ′ is the derivative of the bunch
distribution (for a justification, see e.g. Ref. [8]). Because
of the λ′ in the integral, simulation with such a wake is
more sensitive to numerical errors or noise, and obtaining
reliable results becomes more challenging.

With shielding, the wake w(q) = w0(q) + w1(q), with

w1(q) = −ρ1/3
( Π

σz0

)4/3

G(Πq), (7)

where the shielding parameter Π = σz0ρ
1/2/h3/2, and 2h

is the separation between the two plates. The term w1(q) is
the contribution to the wake of the image charges generated
by the metal plates; note that it is in general non-zero for
both signs of argument. The functionG is given by

G(ζ) = 8π

∞∑
k=1

(−1)k+1

k2
Yk(ζ)[3 − Yk(ζ)]

[1 + Yk(ζ)]3
, (8)

where Yk is a root of the equation

Yk − 3ζ

k3/2
Y

1/4
k − 3 = 0. (9)
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This equation has two real, positive roots and two complex
roots. We choose the smaller real root when ζ < 0, the
larger real root when ζ > 0. Normally, in the simulations,
we sum k up to 25.

For the CSR wake, the beam dynamics depend only on
two dimensionless parameters, Π and Scsr = Iρ1/3/σ

4/3
z0 .

We have performed stability calculations for this model,
for shielding parameter Π up to 15. The threshold results
are given in Fig. 2. We find good agreement between the
VFP and LV results. With no shielding Scsr = 0.50; there
is a deep dip in the curve in the vicinity of Π = 0.7 where
Scsr = 0.17; then most of the results follow closely the
straight line Scsr = 0.5 + 0.12Π (the dashes). In Fig. 3
we plot the Haı̈ssinski solution at threshold and the wake
induced voltage vind for selected values of shielding pa-
rameter, Π. With no shielding the bunch shape is markedly
triangular; with increasing shielding it moves gradually to-
ward that of the unperturbed Gaussian. We see that v ind,
in amplitude, drops quickly as Π increases from zero; by
Π � 1.5 this function, in addition, has become largely in-
ductive.
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Figure 2: For the CSR wake, threshold value of Scsr vs.
shielding parameter, Π = ρ1/2σz0/h

3/2. Symbols give
results of the VFP solver (blue) and the LV code (red).

Resistive Wall Wake

Here we consider the ring impedance to be what one
finds on the axis of a round, metallic beam pipe of radius
a, conductivity σc, and length C:

w(q) = H(−q) C
2πa

√
c

σc

1

(−qσz0)3/2 . (10)

We see that this wake is also singular.
For the resistive wall wake the instability threshold is de-

termined by the dimensionless parameter Srw = Iw(−1).
Simulations with the VFP code give a threshold at Srw =
9.15. Unfortunately, the LV code could not reproduce this
result. We believe that the reason for the discrepancy be-
tween the VFP and LV codes is due to the singular nature
of the wake (10), and plan to investigate it in the future.
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Figure 3: Haı̈ssinski solution at threshold and wake in-
duced voltage for the cases Π = 0.0, 0.69, 1.5, 3.5, 7.5.
Note that bunch head is to the right.

CONCLUSION

For the task of finding the microwave threshold, we
have shown that our Vlasov-Fokker-Planck and Linearized
Vlasov solvers agree quite well when applied to impedance
models of (1) a Q = 1 resonator and (2) shielded CSR. For
shielded CSR we have shown that only two dimensionless
parameters, the shielding parameter Π and the strength pa-
rameter Scsr are needed to describe the system; we have,
in addition, shown that the threshold dependence on Π, ex-
cept for a deep dip in the vicinity of Π = 0.7, is to good
approximation linear and given by Scsr = 0.5 + 0.12Π.
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