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Abstract 
FERMI@ELETTRA is a single pass FEL Facility in 

construction at the ELETTRA Laboratory in Trieste. To 
linearize the beam longitudinal phase space, it is planned 
to use a short X-band accelerating structure installed 
before the first bunch compressor. Since both the end 
tubes of the structure have a reduced radius of 5.0 mm, 
much smaller than the 13.5 mm radius of the beam pipes 
before and after the structure, a transition, either stepped 
or tapered, will be necessary between the two 
components. Using the ABCI code, we have investigated 
the short range wake fields at the step-out and taper-out 
transitions and we have compared them with some 
conventional analytical models. We have developed 
specific ABCI-based analytical models that simulate 
accurately the short range wake field for a wide range of 
rms bunch lengths (σ: 100 - 1000 μm). 

LONGITUDINAL WAKEFIELDS 
Fig. 1 represents the two possible transitions 

understudy. Due to limited space, the distance allowed for 
tapered transition is only 2.882 cm. 

 

Figure 1: Lay out of the step-out and tapered-out 
transitions of X-band structure to the beam tubes. 

Step-out transition 

For very short bunches (σz << a) it has been found that 
the wake potential is resistive [1-3], i.e. the shape of the 
wake potential is the same as the bunch distribution [4]. 
This means that the real part of the impedance is constant 
at high frequency and the imaginary part is zero. For a 
Gaussian bunch the wake is given by: 

( ) ( ) 2

2

2
23

0

2
ln

z
l

s

z

step

eabcZsW σ

σπ

−

=                     (1) 

Where s is the position within the bunch and Z0 = 377Ω 
and c the speed of light; the real and imaginary parts of 
the impedance at high frequency are given by: 

Re ⎟
⎠
⎞⎜

⎝
⎛=

a
bZZl ln0

π
 ,  Im Zl ≈ 0                  (2) 

The longitudinal loss factor in terms of Zl is given by: 
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ABCI code [5] has been used to check the compliance 
of our step transition with equations (1-3). Fig. 2 shows 
both the real and imaginary impedances at two 
distinguished bunch lengths. As noticed, the impedances 
have a resonance just after beam pipe cut-off and reach 
asymptotic value (ReZl ≈ 116 Ω, ImZl ≈ 0 Ω) at high 
frequency. Eq. 3 slightly overestimates the real impedance 
(119.2 Ω) which in turn overestimates the loss factor. 
Moreover, and as concluded from Fig.2, the analytical 
model is perfectly valid for very short bunches (σz << a), 
where the diffraction model [6,7] is applied. At long 
bunches (σz ≤ a) the impedance is not purely resistive and 
it has a reactive (inductive) component which means that 
the tail of the long bunch will gain energy by the wake 
field. This is clearly shown in Fig. 3 for the same two 
bunches. Accordingly, the same analytical model (Eq. 1) 
could be used to accurately evaluate the wakes on a wide 
range of bunch lengths if it is modified to compensate: a) 
the slight overestimation of peak potentials at short 
bunches, b) the inductive effect at long bunches.  
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Figure 2: Real and imaginary impedances of the step-out 
transition at 100 μm and 900 μm rms bunch lengths  
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Figure 3: Numerical and analytical longitudinal wake 
potentials of the step-out transition at 100 μm and 900 μm 
rms bunch lengths 
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This could be done by investigating the deviation of the 
analytical model from the ABCI data. Fig. 4 shows the 
error evolution in the longitudinal wakes as a function of 
the bunch length.  It is quite clear that at very short 
bunches the error is mainly localized around the beam 
center; as the bunch length increases the error is extended 
to the bunch tail till eventually approaches the sigmoid 
function attitude. Accordingly, a sigmoid function will be 
added to the analytical model (Eq. 1) to compensate the 
aforementioned error. The new modified analytical model 
has the form: 
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ABCI data has been fitted using the new model and the 
fitting parameters have been evaluated for each bunch 
length. Parameters C = -4366.28 and D = 0.000589 are 
fixed for all bunch lengths while A(σz) and B(σz) are 
shown in Fig. 5 and given by equations (5,6): 
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Fig. 6 represents the wakes calculated by the new 
ABCI-based model in comparison with ABCI data for 
different bunch lengths (σ : 100 μm – 1000 μm).  
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Figure 4: Deviation of Eq. 1 from ABCI data as the bunch 
length increases.  
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Figure 5: Fitting parameters A(σz) and B(σz) as a function 
of bunch length.  

  
Figure 6: Longitudinal wakes calculated by the new ABCI 
model (black dashed) vs. ABCI (coloured) for step case. 

As shown, the new ABCI-based analytical model is 
accurately fit to the wake of the ABCI numerical data 
along the entire bunch. To derive an accurate model of the 
loss factor we used the following equation:  
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Where λ(σ) is the bunch distribution. Comparing the 
loss factor obtained by Eq. 7 with that one given by Eq. 3, 
the new ABCI-based loss factor formula is obtained as: 
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Fig. 7 shows the loss factor obtained by ABCI data in 
comparison with the original model (Eq. 3) and the new 
ABCI-based model (Eq. 8).  As shown, the new model 
evaluates accurately the loss factor on a wide range of 
bunch lengths (σ : 100 μm – 1000 μm). 
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Figure7: Comparison of loss factor ABCI with respect to 
those calculated using Eq. 3 and Eq. 8.  

Taper-out transition 
The impedances and wakes of slowly tapered structures 

have been investigated and suggested by many authors [7-
9] to reduce the loss caused by step transition. As 
mentioned in Fig. 1, the distance allowed for tapering is 
only 2.882 cm making 170 degree tapering angle. Since 
the tapering angle will not be significant unless the angle 
is: tanθ  ≈ σz /a [4], hence the existing taper could be 
considered as step-out transition specially at very short 
bunches and as  intermediate case between step-out and 
taper out transitions at long bunches. Accordingly, Eq. 1 
will be used as a start point for evaluating the wakes and 
Eq. 9 [7, 10] for the loss factor calculation: 
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We followed the same approach of step-out transition 
case; based on the deviation of Eq. 3 from ABCI data, the 
new ABCI-based model of the wake potential in the taper-
out transition case is suggested as follow: 

( ) ( ) ( ) ( )
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

+×=
2

2

2h
gs

zlzml

tap
eFsWEsW σσ   (11) 

Parameters g = -0.0025 and h= 0.0015 are fixed for all 
bunch lengths while E(σz) and F(σz) are shown in Fig. 8 
and given by equations (12,13): 
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Fig. 9 shows the wakes calculated by the new ABCI-
based model for taper case in comparison with ABCI data 
for different bunch lengths (σ : 100 μm – 1000 μm). 
Apparently, the new ABCI-based analytical model fits 
accurately to the wake of the ABCI numerical data along 
the entire bunch. Worthy to note that in this case the loss 
factor given by equations [9, 10] is reliable within ±2%.   
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Figure 8: Fitting parameters E(σz) and F(σz) as a function 
of bunch length.  

 
Figure 9: Longitudinal wakes calculated by the new ABCI  
model (black dashed) vs. ABCI (coloured) for taper case.  

TRANSVERSE WAKEFIELDS 
One of the most useful uses of the Panofsky-Wenzel 

theorem is that by integrating the longitudinal wake 
function we can obtain the transverse wake function and 
vice versa. Accordingly, since the wake potential of 
bunch of particles with Gaussian distribution in step-out 
transition has a Gaussian pattern, then the transverse wake 
potential will be the integration of such Gaussian shape 
leading to a transverse wake potential with the shape of 
cumulative distribution function. Bane K.L. and Stupakov 
G. [11,12] studied in deep details the wakes and 
impedances for any non-axisymmetric transitions of any 
arbitrary shape using the optical approximation regime. 
As a special case of their studies, the transverse 
impedance of the step-out transition is given by: 
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Since the transverse wake function is related to the 
transverse impedance through inverse Fourier transform, 
hence the transverse wake function is given by: 
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Starting with these two equations we followed the same 
approach of longitudinal case and we derived an ABCI 
based analytical model for evaluating the transverse wake 
fields of step/taper out transitions on  wide range of bunch 
lengths (σ: 100μm–1000μm). Fig.10 shows the transverse 
wakes calculated by the new ABCI-based models in 
comparison to ABCI data for both out transitions.   

Figure10: transverse wakes calculated by the new ABCI 
model (black dashed) vs. ABCI (coloured) for step-out 
transition case (left) and taper-out transition (right). 

CONCLUSION 
There is no preference to use specific transition at very 

short bunches. At long bunches the taper out transitions is 
preferred from the transverse wakes point of view only. 
More details will be available in PRST version. 
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