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Abstract

Electron lenses for the head-on beam-beam compensa-
tion are under construction at the Relativistic Heavy Ion
Collider. The bunch length is of the same order as the
β-function at the interaction point, and a proton passing
through proton bunch experiences a substantial phase shift
which modifies the beam-beam interaction. We review the
effect of the bunch length in the single pass beam-beam
interaction, apply the same analysis to a proton passing
through a long electron lens, and study the single pass
beam-beam compensation with long bunches.

INTRODUCTION
In proton-proton collisions exact beam-beam compensa-

tion can be achieved with short bunches and a short elec-
tron lens if three conditions are met [1]: First, there are no
nonlinearities between the 2 collisions. Second, the phase
advance between the p-p and p-e collision is a multiple of
180 deg. Third, the proton and the electron beams produce
the same amplitude dependent forces by having the same
effective charge and transverse profile.

In practice these conditions can only be met approxi-
mately. We investigate how long bunches affect the beam-
beam compensation. We study a test proton that interacts
with a long bunch, is transported through a linear channel
of variable phase advance, and interacts with a long elec-
tron lens. We consider only transversely round beams.

Our study is motivated by the head-on beam-beam com-
pensation effort for the Brookhaven Relativistic Heavy Ion
Collider (RHIC) [1], following the use of electron lenses
in the Fermilab Tevatron [2–4]. The main parameters for
our case are given in Tab. 1. We will first calculate the
change in the transverse coordinates (r, r′) of a test parti-
cle, including a time delay δt, treat the case of a long elec-
tron lens, and finally study the beam-beam compensation
for proton-proton collisions with an electron lens.

SINGLE PASS PROTON INTERACTION
WITH LONG BUNCH

We consider round Gaussian bunches of rms size σp and
rms length σs � σp. We choose the longitudinal coordi-
nate s = 0 at the IP, and the time t = 0 when the opposing
proton bunch center passes through s = 0. The test particle
shall arrive at s = 0 at time δt, so that its time dependent
s-position is s = βp1c(t−δt), where c is the speed of light,
βp1 the relativistic factor of the test particle, and βp2 for the
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Table 1: Reference case for RHIC beam-beam and beam-
lens interactions with parameters from Ref. [1].

quantity unit value
proton beam parameters
total energy Ep GeV 250
bunch intensity Np 1011 2.0
rms beam size at IP6, IP8 σ∗

p μm 70
rms beam size at IP10 σ∗

p μm 310
rms bunch length σs m 0.25
hourglass factor F , initial ... 0.88
beam-beam parameter ξ/IP ... 0.010
number of beam-beam IPs ... 2+1∗

electron lens parameters
distance of center from IP m 2.0
effective length Le m 2.1
kinetic energy Ee kV 6.4
relativistic factor βe ... 0.16
electron line density ne 1011m−1 0.82
electrons in lens Ne1 1011 1.7
electrons encountered Ne2 1011 2.0
current Ie A 0.62

∗One head-on collision in IP6 and IP8 each, and a compensating head-on

collision in IP10.

other beam. Following Ref. [5], radial force for a proton in
the field of the other bunch is

Fr(r) = +
npe

2(1 + βp1βp2)

2πε0r

[
1− exp

(
− r2

2σp(s)2

)]

(1)
where r is the radius, np is the proton line density, e
the elementary charge, and ε0 the permittivity of vacuum.
The rms beam size depends on the s-position as σp(s) =

σp(0)
√
1 + s2/β∗2, where β∗

p is the lattice function at the
IP. The line density np, centered at s = −βp2ct, is given
by

np(s, t) =
Np√
2πσs

exp

[
− (s+ βp2ct)

2

2σ2
s

]
. (2)

Np is the number of protons in the opposing bunch. The
time evolution of (r, r′) is then given by

dr

dt
= cr′

dr′
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=
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2πβp1γp1σs

×
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p(βp1c(t− δt))
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.

(3)

rp is the classical proton radius. Eqs. (3) can be integrated
numerically, for example with MATHEMATICA [6].
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We consider a test particle with initial coordinates
(ri(δt), r

′
i(δt)) at the IP. We transform the coordinates to

a location s < 0 so that the test particle is outside the op-
posing bunch and integrate Eqs. (3) over time t until the test
particle is again outside the opposing bunch. We transform
the coordinates back to the IP, resulting in (rf , r

′
f ). We use

the vector R =
√
(rf − ri)2 + (r′f − r′i)2 to describe the

change in the coordinates. We compare the result of the in-
tegration with the case of an infinitely short bunch, denoted
by the subscript “sb”, (σs → 0) and δt = 0 [5], for which

we use the vector ΔR =
√
(rf − rf,sb)2 + (r′f − r′i,sb)2.

The numerical integration of Eqs. (3) does generally not
guarantee symplecticity, nor does it account for the energy
change of the test particle due to the electric field of the op-
posing bunch. A full 6D symplectic treatment of the beam-
beam interaction can be done with synchro-beam mapping
(SBM) [7]. In Ref. [8] the SBM technique was applied to
the a more general case with coupling and crossing angle.

Figure 1 (a) shows the vector (rf , r′f ) as a function of
(ri, r

′
i) for an infinitely short bunch. (b) shows the devi-

ation from case (a) for a long bunch with parameters in
Tab. 1, and (c) for a long bunch and a test particle with time
delay δt = 3σt. Take note of the R and ΔR values. For
test particles with a large time delay, a large r′ value and an
initial r value of about an rms beam size, the beam-beam
kick is almost reversed.

SINGLE PASS PROTON INTERACTION
WITH LONG ELECTRON LENSES

In RHIC the electrons in the lens are non-relativistic, and
both the rms electron beam size σe and line density ne are
constant. To accommodate two lenses in a common beam
pipe section, the lenses are placed close to but not at the IP
(see Tab. 1). With this the equivalent of Eqs. (3) is
dr

dt
= cr′

dr′

dt
= −2nerpc(1 + βp1βe)

βp1γp1

× 1

r

[
1− exp

(
− r2

2σ2
e

)]
.

(4)

The integration of Eqs. (4) extends over the length of the
electron lens Le, i.e. the time Le/(βp1c). The electron
lens is characterized by the beam size σe, and its integrated
strength Ne1 = (neLe) (or the current Ie = eneβec).

SINGLE PASS HEAD-ON BEAM-BEAM
COMPENSATION

We now consider a beam-beam interaction with a long
bunch at IP8 followed by a linear transport channel and
an interaction with a long electron lens near IP10 (with
parameters in Tab. 1). Our expectation for a phase devi-
ation from a multiple of 180 deg is Δψ ≈ 10 deg. The
electron beam size is given by σe = σe0 + Δσe where
σe0 matches the proton beam size. The electron current

is given by Ie = Ie0 + ΔIe with Ie0 =
(

Np

Le

)
eβec

1+βe/βp1
.

Ie0 matches the proton bunch intensity NP of the oppos-
ing beam. Note that for a short bunch and electron lens,

and Δψ = 0, Δσe = 0, ΔIe = 0 the head-on beam-beam
compensation is exact.

Figure 2 (a) shows (rf , r′f ) of a proton at IP10 after in-
teraction with a long bunch, a linear transport channel of
varying phase advance, and a long electron lens. The ini-
tial (ri, r′i) are taken at IP8. Part (b) is with HOBBC with
a phase error of Δψ = −10 deg, and a current error of
ΔIe/Ie0 = −5 deg. Part (c) also includes a time delay of
the test particle of δt = −3σt.

SUMMARY
The deviation of the beam-beam interaction from the

short bunch case is most pronounced for particles with ini-
tially large r′ and r ≈ 1 rms beam size. For these parti-
cles the beam-beam effect is reduced; for the parameters in
Tab. 1, by about 10%. The interaction is further modified
for test particles with a time delay δt. For the parameter
set under study, particles with initially large r′ and r ≈ 1
rms beam size the changes in (r, r′) change sign compared
to the short bunch case. The beam-beam effect in a long
electron lens is also modified compared to a short electron
lens. In the RHIC case the effect is small because of the
size of the β-function at the electron lens. Consistent with
these results we find single-pass head-on beam-beam com-
pensation ineffective for particles with initially large r′ and
r ≈ 1 rms beam size, and large δt. Compensation should
still be effective when averaged over many turns.

The single pass head-on compensation calculations can
be used to establish goals for the betatron phase error be-
tween between the p-p and p-e interactions (Δψ ≤ 10 deg),
the electron beam size error (Δσe/σe0 ≤ 20%) and the
electron current error (ΔIe/Ie0 ≤ 5%) [9]. A full inves-
tigation of the effects of long bunches requires long-term
tracking of many particles. The modification of resonance
driving terms due to the bunch length was investigated in
Ref. [10].
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Figure 1: Change of (r, r′) as a function of (ri, r′i) for a
test particle interacting with a long proton bunch. (a) shows
the the change of (r, r′) for an infinitely short bunch. (b)
shows the deviation from case (a) for a long bunch with
parameters in Tab. 1, and (c) for a long bunch and a test
particle with time delay. Take note of theR andΔR values.
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Figure 2: (rf , r
′
f ) at IP10 as a function of (ri, r

′
i) at

IP8 for a test particle. (a) shows the situation without
head-on beam-beam compensation (HOBBC), and (b) with
HOBBC with a phase error of Δψ = −10 deg, and a cur-
rent error of ΔIe/Ie0 = −5 deg. Part (c) also includes a
time delay of the test particle of δt = −3σt.
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