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Abstract 
A method of beam energy spread and synchrotron tune 

measurements based on the analysis of transverse 
decoherence\recoherence signal of kicked beam is 
presented. As an illustration the beam energy spread was 
extracted for the SLS storage ring. 

INTRODUCTION 
Charged particles beam in storage ring kicked 

transversely in some azimuthal position starts performing 
betatron oscillations around the closed orbit. The beam 
centroid can be observed in subsequent turns by beam 
position monitors (BPM). If all the particles have the 
same betatron tune the oscillations of the beam are 
coherent, and the beam centroid motion is harmonic. 
However, if the beam contains a spread of tunes, the 
motion will decohere as the individual betatron phases of 
the particles disperse. The tune spread of individual 
particles in the beam may be caused both by intrinsic 
betatron tune spread due to transverse nonlinearity and 
the chromaticity that couples the particle energy spread 
and the tune shift [1,2,3]. The knowledge about the 
contribution of the transverse nonlinearity and the 
chromaticity to the BPM data processing is an important 
issue for fine energy spread and synchrotron tune 
measurements and nonlinear beam dynamics study.  

The results which are the continuation of the study 
presented in PAC’09 [3], i.e. the study of decoherence of 
kicked beam transverse oscillations taking into account 
the amplitude dependent tune shifts and the 1st and 2nd 
order chromaticities, are presented in this paper. A 
procedure is developed to analyse turn by turn BPM data 
and extract the beam energy spread and the synchrotron 
tune. That procedure is applied on either TRACY [4] 
simulation data or experimental data taken at the SLS 
storage ring.  

ANALYTICAL TREATMENT 
As it was mentioned in [3] in the analytical model it is 

assumed that the transverse distribution is Gaussian, i.e. 
the distortion of phase space trajectories due to 
nonlinearity is small. It is also assumed that the tune shift 
with oscillations amplitude is a quadratic function. For the 
case of decoherence due to chromaticity, it is assumed 
that the synchrotron motion is linear and the energy 
distribution is Gaussian. It is also assumed that the energy 
distribution is uncorrelated with the transverse 
distribution. Under these assumptions the decoherence 
due to chromaticity is completely independent of the 

transverse distribution. Furthermore, transverse coupling 
is neglected. All these assumptions are well justified in a 
well-corrected storage ring. 

The centroid motion is considered in vertical phase 
space where there is no dispersion.  

A particle in longitudinal phase space propagates in 
time by 
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where eEE σδ Δ= , ss στ Δ=  are normalized 
longitudinal coordinates, sν  is the synchrotron tune and 
time is measured by turn numbers.  

For a single particle the transverse displacement time 
evolution is given by the betatron phase 

( ) ( )nrny yyy ϕσ cos = .  (2) 

where the amplitude is scaled to the rms beam size σy, 

yyyy Jr σβ /2=  , βy is the betatron function, 2Jy is the 

Courant-Snyder invariant, ϕy(n) is the betatron phase at 
the n-th turn. In the presence of transverse nonlinearity 
and nonzero value of the first and second order 
chromaticities the electrons with different energies and 
betatron amplitudes execute betatron oscillations with 
different tunes, and the tune shift 0)( yyy n ννν −=Δ  with 
respect to the nominal tune νy0 in turn n is given as 
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where ξy1 and ξy2 are the first and the second order 
chromaticities  respectively and  
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where εx and εy are horizontal and vertical emittances 
respectively. 

From (1) and (3) for the betatron phase advance after 
N  turns one obtains  
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In longitudinal phase space the distribution of particles 
is invariant in time and has the following form: 
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In transverse phase space the situation is different.
Before the kick in normalized amplitude-phase 
coordinates ),( ϕr  the distributions of particles are the 
following  
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After application of Δy  the horizontal phase space 
distribution remains unchanged while the vertical one 
becomes  
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Here yyy yz σβ ′Δ=  is the normalized kick. For the 

kicked beam after N  turns one gets  
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From this distribution for the centroid displacement one 
gets (see also [3]) 
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Here the functions A(N), H(N), and Exp[-M(N)] are 
shaping the envelope of the beam signal: 
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with syesye KK νξσνξσ 2
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Functions A(N) and H(N) describe a monotonous 

pseudo-damping of the beam centroid signal due to tune 
shifts with amplitude and the second order chromaticity.  
The exponential function Exp[-M(N)] describes a 
modulation of the centroid displacement due to the 
decoherence and recoherence driven by linear 
chromaticity, with the modulation depths slowly 
decreasing due to nonlinear chromaticity. 

Functions P(N) and Q(N) describe a slow phase 
modulation of the fast betatron oscillation driven by the 
second order chromaticity and tune shift with amplitude. 
They are not presented here since they are not needed in 
the discussions of this work (see [2,3]). 

Figure 1 shows the decoherence signal according to our 
theoretical model with typical parameters of the SLS 
storage ring and kick angle Δy =200 μrad:  

Table 1: Typical parameters of the SLS storage ring 
εx 5.7 nmrad 
εy 0.1% of εx 
νy0 8.737 
νs 6.25*10-3 
σe 8.6*10-4 
ξy1 4.8 
ξy2 77 

∂νy/ ∂Jy -606 m-1 

∂νy/ ∂Jx 673 m-1 
 

The position of vertical pinger (βy0=6.96m) is 
considered as a kick point and the position of the first 
BPM (βy=9.58m) - the data registration point. Note that 
for the kick and observation positions spacing by the 
betatron phase advance Δϕ in the ring the formula (10) 
must be slightly modified:  
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The envelope is shown as solid red line. The dashed 
green line plots damping factor. Note that the formula 
(12) does not include the radiation damping, which is 
slow in comparison to the processes we consider here. 

 

Figure 1: The decoherence signal according to the 
theoretical model. 
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ENERGY SPREAD AND SYNCHROTRON 
TUNE 

As one can see from (11) and (12) the distance between 
the neighbor maximums of the signal is equal to 1/νs. The 
synchrotron tune can be measured using that fact. As 
concerns the energy spread extraction, more detailed 
analysis of (11) is required. When the 2nd order 
chromaticity is less than 200, as it is for the SLS storage 
ring, one can act in the following way: from (11) it is 
clear that if ξy2, μy, μyx are zero, then A(N)≡1, H(N)≡1 
(there is no damping) and  
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no matter which maximum and minimum is taken (see 
[5]). When ξy2, μy, μyx are not equal to zero (there is 
damping) the value of the first maximum remains 
unchanged. Changes of value of the first minimum 
(according to (11)) depending on ξy2 for three different 
values of ξy1, for the kick 300 μrad and parameters from 
Table 1 are given in Figure 2. 

 

Figure 2: Dashed blue line - ξy1=2.8, solid red line - 
ξy1=4.8, dashed green line - ξy1=7.8. 

For ξy2=77, as it is for the SLS storage ring, the effect 
of second order chromaticity and amplitude dependent 
tune shift on the value of the first minimum is about 0.4 
microns (for kicks smaller than 300 μrad that difference is 
even smaller) which is too small compared with 20 
microns of BPM resolution error. So formula (13) can be 
used putting in it values of the first maximum and the first 
minimum.  

Extracting the beam energy spread and the synchrotron 
tune from each BPM signal obtained by TRACY 
simulation and averaging over all 73 BPMs we obtained 
0.000851 and 0.006254 respectively. The mean square 

deviations (MSD) of these parameters extracted from 73 
BMP signals from obtained average values are 1.3% and 
0.66% respectively. By the same way the beam energy 
spread was extracted from the experimental data taken at 
the SLS storage ring. In Table 2 average values of the 
beam energy spread and the MSD from them for 3 
different values of ξy1 and kick are presented. 

Table 2: Average beam energy spread and MSD 

Δy                       ξy1 2.8 4.8 7.8 

Av. σe 0.000973 0.000872 0.000763 
57.51 
μrad MSD 9.1% 6.1% 9.3% 

Av. σe 0.000905 0.000872 0.000827 
121.2 
μrad MSD 6.3% 4.1% 5.9% 

Av. σe 0.000876 0.000853 0.000845 
185.7 
μrad MSD 4.6% 3.5% 4.9% 

CONCLUSIONS AND OUTLOOK 
A procedure is developed to measure the beam energy 

spread and the synchrotron tune relying on an analytical 
model of transversely kicked beam decoherence signals, 
which includes amplitude dependant tune shifts and the 1st 
and 2nd order chromaticities. The estimation of precision 
of this method is in progress. 
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