
POTENTIAL FORMS FOR ELECTROSTATIC AND MAGNETIC 
CYLINDRICAL LENS AND TRACKING OF CHARGED PARTICLE 

M.H. Rashid, C. Mallik and R.K. Bhandari, VECC, Kolkata, India

Abstract 
A cylindrical lens is mainly used for focusing and 

transporting low energy beam. Some analytical forms of 
scalar potential have been formulated to evaluate electric 
and magnetic field and its derivatives on the central axis, 
which help in evaluation of potential and field in the 
region about the central axis. They are, subsequently, 
used to analytically find out the optical properties of the 
lens as well as in tracking of charged particles through 
section method in which a thick lens is divided into large 
number of thin weak lenses arranged transverse to the 
central beam line. The field computation technique with 
given lens parameters and section method of calculating 
optical parameters of thick lens described in the paper 
turn into a tool to design an electrostatic or a magnetic 
cylindrical lens with more accuracy as per the 
requirements. 

INTRODUCTION 
Either electrostatic or magnetic cylindrical lenses are 

used for focusing low energy beam from an ion source. 
To evaluate the optical parameters of these lenses, 
potential and field distribution is needed either by 
analytical or numerical methods. In absence of closed 
form analytical expressions for the distribution, people 
mostly use numerical method to calculate the potential 
and field distribution with good accuracy.  

It is easier to construct a solenoid lens with a 
cylindrical symmetry and also it does not have any break-
down problem except entangling of the beam emittances 
in x- and y-planes because of the rotation of the beam 
about the axis. If the initial beam to be transported is 
round then entangling of the sub-phase spaces in (x-z) and 
(y-z) plane is of less concern. Using the same simple 
potential form, field can be evaluated for two cylinder 
lens for immersion type lens.  

We shall consider ways of generating the potential 
distribution for lens with two electrodes (two equal ½-
parts of a solenoid). If the electrode potentials are V1 and 
V2, we can express the axial potential in the form of eq. 
(1), which satisfy the Laplace equation. The potential and 
the field distribution can also be known using eq. (2) 
around the central z-axis inside a lens. The first term in 
eq. (1) is vanishes if V1=V and V2=-V. 

The field is evaluated from ξ(r,z)=-grad(φ(r,z)) and 
expression for φ(0,z) is obtained for electrostatic (ES) 
(magnetostatic (MS)) configuration of lens parameters 
like diameter D, spacing S, applied electro(magneto)-
motive-force on the right and left conductors (poles) in 
Fig. 1 are V (NI/2) and -V (-NI/2) respectively. 

φ(z) = (V1+V2)/2 + (V2-V1)/2 φ(z)                      (1)  
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POTENTIAL AND FIELD FORMS 
A ES cylindrical (MS Glaser solenoid) lens fits inside 

(on) a non-magnetic metal beam pipe. The lens 
parameters set the design of the lens of certain focal 
length, F for a given beam of particular average energy 
and Bρ.  The iron shielded (hatched area) Glaser 
solenoids lens are shown in the middle of Fig. 1 below. 

 
Figure 1: Sketch of ES Cylinder lens of immersion type 
on the upper figure, Glaser solenoids with poles in the 
middle and electro(magneto)-motive-force, MF charged 
on the cylinders (poles) as shown in the lowest figure. 

Electric and Magnetic Scalar Potential 
We assume the origin of the z-axis at the centre of the 

gap between the cylinders (mid-length of the solenoid). 
We will describe here two combined ES and MS forms of 
scalar potential along the axis represented by ϕ1 
[1(p.285), 2(p.36)] and ϕ2 [1(p.49), 2(p.38)], which 
depend on the geometry of cylinderical lens (solenoid) 
and electro(magneto)-motive-force MF.  
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Where I0(x) is the modified Bessel function of first kind 
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and order zero. The integration is in radial direction using 
the dummy variable r. 
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Where ϕ2(z) is a monotonic function of z and goes to ±1 
as z approaches ±   .  It is deduced from electric scalar 
potential form given by Szilagyi [3] for two apertures at 
the two ends. This uses a superposition of the potentials 
for two thin apertures with equal diameter D separated by 
a distance S. 
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Figure 2: Plot of electric(A) and magnetic (B) scalar 
potentials on the central z-axis. 

Electric Field and Magnetic Induction 
The radial component of the induction is given by 

ξr(r,z)≈(r/2)(∂2ϕ(z)/∂z2), which is used to derive ξz(r,z) 
using the azimuthal curl, (∂ξz/∂r-∂ξr/∂z)=0, which is 
expressed in series form by eq. (2). The field, ξ(z)=-
∂ϕ(z)/∂z corresponds to electric field if MF=V2-V1 and 
magnetic inductions, B(z)=-μ0ξ(z) and MF=NI Amp-turn 
of the solenoid on the z-axis deduced from the 
corresponding ϕ’s are given by eqs. (5) and (6), which are 
utilized to obtain the off-axis field distribution and the 
particle optics in the lens. The potentials and the fields 
along the axis of the cylinder (solenoid) for S=D=0.1m 

and MF=10kV (80kA-turn) are shown in Fig. 2 and 3 
respectively. 
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Figure 3: Plot of electric field (A) and magnetic induction 
(B) on the central z-axis. 

PARTICLE TRACKING IN LENSES 
We know that a charged particle moving along the 

central axis para-axially in a cylindrical ES lens, the 
particle gets radial kick qEr(z) inward or outward as 
ϕ”(z)> or <0 respectively. The particle get inward or 
outward kick at the rising or falling B(z) region 
respectively when it moves in the direction of B(z). The 
motion of the particle is properly described by eq. (7) in 
both electric and magnetic cases. In the electric case 
T(z)=(√3φ’(z))/(4φ(z)) and R=rφ1/4(z), which is called the 
reduced ray. The reduced ray maches to the actual ray 
when optical evaluation is done for sectionized thin weak 
lenses. In the magnetic case T(z)=B(z)/(2Bρ), where Bρ 

8 

(B) 

(A) (A) 

(B) 

Proceedings of IPAC’10, Kyoto, Japan THPD087

05 Beam Dynamics and Electromagnetic Fields

D01 Beam Optics - Lattices, Correction Schemes, Transport 4489



and R=r are the beam rigidity and the actual radial 
position respectively. 

02 =+′′ RzTR )(     (7) 

The lenses are generally thick but we have assumed a 
thin weak lens for proper formulation and description of 
the optical properties of the lens for para-axial rays for 
which the radial change inside the lens is assumed to be 
negligible. So, the thick lens is sectionized into a large 
number of thin lenses of width ‘d’ in which the above 
assumptions are valid. The solution of the eq. (7) is given 
in matrix form in eq. (8).  

Smooth profiles of the field and potential along the axis 
are divided into large number of small stepped profile. 
Each step represents a weak thin lens as change in radial 
movement is very small. The effect of the individual 
weak lenses is evaluated and combined by matrix 
multiplication method to get optical property of the thick 
lens. The total focal length due to all the thin lenses (for 
magnetic solenoid lens, [4]) including a drift space of 
width ‘d’ in between the thin lenses gives very accurate 
tracking of particles in the thick lens. The rotation of the 
particle is also discussed in the reference [4].  
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The optical property of an ES cylinder lens of 
immersion type is evaluated using the similar method. 
The focal length for the thin lens here is conventionally 
written as f=1/(Tsin(Td))= 1/(T2d) and the position of the 
principal plane is zp=(cos(Td)+1)/ (Tsin(Td)). 

Let V0=10kV be the initial potential to attain the initial 
kinetic energy by the particle (proton here) and it passes 
through a 2-cylinder lens with potential V1=-5kV and 
V2=+5kV. The focal length F=192.5cm of the lens is 
given by eq. (9) if the thickness of the individual n=866 
thin lens be d=0.1cm and taking (ϕ(zn)/ϕ(zn-1))1/4=1 for 
thin lens. Adopting the procedure of reference [4] and 
using the difference formula for general focal length 
1/f=(ξ(zn)-ξ(zn-1))/4(V0-V1+ϕ(zn)) and integrating by 
matrix method the particles are tracked along the axis and 
the focal length F=190.4cm is obtained. The track of 
proton is depicted inside the lens in Fig.4. If the proton is 
tracked numerically solving the Lorentz equation in the 
analytically obtained potential and field distribution, the 
focal length is a little more than 210cm depending on the 
launching radius of the particle exactly along the central 
axis, which is far from satisfying the Gaussian and para-
axial ray condition keeping the lens parameters same. 
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Figure 4: Plot of proton tracking of energy 10 keV in the 
cylindrical ES lens. 

CONCLUSION 
This method was used in [4] to evaluate the optical 
properties of Glaser solenoid using the magnetic field 
obtained by eq. (6) and the measured actual field for the 
same magneto-motive-force (Amp-turn). The position of 
the focus and the principal plane matched within ~3% 
difference. The theory proposed in this paper for the 
electrostatic lens consisting of two cylinders of immersion 
type also promises to give accurate optical properties and 
thus the method turns into a tool to design cylindrical 
electrostatic lens and magnetic solenoid lens for various 
applications. 

The method can further be extended to investigate for 
designing electrostatic and magnetic Einzel lenses 
accurately. Study of a rotationally symmetric combined 
electrostatic and magnetic lens by this method will prove 
to be vital for its probably accurate design. 
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