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Abstract 
The nonlinear self-consistent theory of wake field exci-

tation in the multilayered dielectric resonators is built. 
Expressions for excited fields, functionally depending on 
position of bunch particles in the resonator are found ana-
lytically. Excited fields are presented in the form of su-
perposition solenoidal (LSE and LSM types) and potential 
fields. The nonlinear theory built in a general view is va-
lid for any number of dielectric layers. 

INTRODUCTION 
Multizone dielectric structures are attractive for the use 

in perspective two-beam accelerators of charged particles 
[1,2]. The transport channel for drive bunch and the acce-
lerating channel for witness bunch are spaced, therefore, 
it is possible to obtain the great value of a transformer 
ratio and, thus, to reach ultrahigh rate of acceleration. 

Theoretical description of wake field excitation in the 
dielectric structures of a rectangular configuration is 
usually restricted to the linear approach [3], with the rigid 
motion of exciting bunches. Completely numerical me-
thods [2] allow considering bunch dynamics. But applica-
bility these methods is restricted frequently by opportuni-
ties of the up-to-date computers. Especially this problem 
is topical when simulating of wake fields of the terahertz 
frequency band. 

In the present paper we report the combined method of 
the account of bunch dynamics on wake field excitation. 
Expressions for energized fields are found by analytical 
methods. They functionally depend from particle loca-
tions at the any time (a nonlinear source function). To-
gether with motion equations they allow to describe self-
consistently a dynamics of fields and bunches. 

STATEMENT OF THE PROBLEM 
The multizone dielectric structure under investigation is 

a rectangular metal resonator with dielectric slabs dis-
posed parallelly to one of walls [3]. We shall direct y-axis 
of the cartesian coordinate system parallelly to slabs, x-
axis is perpendicular to slabs. The dielectric slabs have 
generally various values of a permittivity 

(1 )i i Nε ε= ≤ ≤  and a permeability (1 )i i Nμ μ= ≤ ≤ , 

N  - number of zones of the dielectric structure. In one of 
vacuum zone ( 1, 1ε μ= = ), parallelly z-axis the electron 

bunch exciting the resonator travels. Width of the resona-
tor is a , height is b , length is L . 

Let's express required fields in the form of the total of 
solenoidal and potential components[4]: 

 ,= + =t l tE E E H H , (1) 

where vortex components of an electromagnetic field 
tE  

и tH  ( div( ) 0, div( ) 0ε μ= =t tE H ) satisfy to the first 

and the second Maxwell equations 

( ) 4 ( )
rot , rot ,

x x

c t c c t

ε π μ∂ ∂= + = −
∂ ∂

t t
t tE H

H j E  (2) 

and the potential electric field lE  satisfies to the Gauss 
law 

 div( ) 4ε πρ=lE . (3) 

The vortex tE  and potential lE  electric fields are mu-
tually orthogonal [4] and satisfy to the boundary condi-
tions vanishing their tangential components at metal walls 
of the resonator: 

 0 0( ) 0, ( ) 0S Sτ τ∈ = ∈ =l tE r E r , (4) 

where 0S  is designates a metal surface of the resonator, 

and subscript τ  notates tangential component of fields.. 
Electron bunches will be described with macroparticles, 

therefore a charge density ρ  and a current density j  we 

shall present as follow 

( ) , ( ) ( ) ,r r j v r r
R R

p p p p p
p V p V

q t q t tρ δ δ
∈ ∈

⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦∑ ∑ (5) 

where pq  is a charge of a macroparticle, pr  и pv  are its 

coordinates and velocity, time-dependent. Summation in 
the eq. (5) is carried out on the particles which are being 
volume of the resonator RV  

Self-consistent dynamics of bunch particles is described 
by the relativistic motion equations in the electromagnetic 
fields excited by bunches 

1
, ,p p p

p p
p p p p

d d
q

dt m c dt mγ γ
⎛ ⎞

= + =⎜ ⎟⎜ ⎟
⎝ ⎠

p r p
E p × B  (6) 

where ( )22 1 /p p pm cγ = + p . 

GREEN FUNCTION OF THE PROBLEM 
Let's derive analytical solutions of set of Eqs. (1)-(5), 

that will allow avoiding numerical solution of them on a 
spatial grid. It is essential difference from numerical algo-
rithms with use particle-in-cell (PIC) method. 

POTENTIAL FIELD 
Taking into account Eqs. (3) and (5), the finding of a 

potential electric field = −∇ΦlE  is reduced to the solu-
tion of the Poisson equation 

2 2

2 2

1 4
( )

R

p p
p V

q t
x x y z

πε δ
ε ε ∈

∂ ∂Φ ∂ Φ ∂ Φ⎛ ⎞ ⎡ ⎤+ + = − −⎜ ⎟ ⎣ ⎦∂ ∂ ∂ ∂⎝ ⎠
∑ r r  (7) 
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The solution of the equation (7) together with boundary 
conditions (4) we shall search by the decomposition me-
thod into eigenfunctions. Also the solution of the equation 
must satisfy to the boundary conditions consisting in con-
tinuity of potential and transverse component of vector 
electric induction. Using a matrix method for a finding of 
eigenfunctions in a multizone waveguide [3] we obtain 
the solution of the equation (7) 

( )
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32
( , , )
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m p
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n l n l
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abL X
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π
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Χ
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+ Χ +
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where 2 2 2 2 2( ) , ( ) ( )m n l
mnl x nl nl y zk k kλ κ κ= + = + , / ,n

yk n bπ=  

/l
zk l Lπ= .  

Eigenvalues m
xk  can be determined from the solution of 

the dispersion equation 
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1i i iw a a −= −  is the i th zone width, ia  is right boundary 

and 1ia −  is left boundary of the the i th zone (

, 0,1,...,ix a i N= = ). For each eigenvalue xk  there is the 

eigenfunction ( )( ) ( )i
m mX x xϕ= : 

( ) ( )1
( ) cos ( ) sin ( )i m m i

m x i x i m
i x

x k x a k x a
k

ϕ χ
ε

⎡ ⎤
= − −⎢ ⎥
⎣ ⎦

,(11) 

1 2
( ) ( )

1

( 1) ( )

sin( )
, 2,

cos( )

sin( ) 0
, .

cos( )

N
x Ni j

m
j i N x x N

x NN N
m m

N x x N N x

k w
V i N

k k w

k w

k k w k

χ
ε

χ χ
ε ε

− ≥

= +

−

−⎛ ⎞ ⎛ ⎞= ≤ −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

−⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏
  (12) 

Functions ( )mX x  are orthogonal with a weight ε  
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VORTEX FIELD 
For a finding of solenoidal parts of an electromagnetic 
field we shall solve the equations (2) with using of de-
composition method on solenoidal fields of the empty 
multizone resonator 

( ) , ( )s s s s
s s

A t i B t= = −∑ ∑t tE E H H , (14) 

here eigenfunchions sE  и sH  meet equations [4] 

 rot rots s s s s sik ikε μ= − =H E E H, , (15) 

/s sk cω= , and sω  are eigenfrequencies of the dielectric 

resonator (indices s in Eqs. (14) and (15) substitutes three 
indices m, n and l). 

Using the procedure developed in Ref. [4] for finding 
of fields excited by an exterior monochromatic source and 
the orthogonality condition 

 * *
' ' '4

R R

s s s s s ss

V V

dV dV Nε μ π δ= =∫ ∫E E H H , (16) 

in case of a non-stationary source for a finding of ampli-
tudes of fields sA  also sB  we obtain the equations: 

 
2 2

2 2
2 2

, ,s s s
s s s s s s

d A dR d B
A B R

dt dt dt
ω ω ω+ = − + = −  (17) 

where *1
( ) [ ( )]

R

s p p s p
p Vs

R q t t
N ∈

= ∑ v E r . (18) 

Solutions of the equations (17) look like: 

 
0

1
'sin ( ') ( '),

t
s

s s s s
s

dB
B dt t t R t A

dt
ω

ω
= − − =∫ . (19) 

It is known [3,5], that all components of an electro-
magnetic field of eigenwaves of multizone dielectric 
structure can be expressed through the two componets, 
which are perpendicular to the dielectric slabs. For the 
LSM waves they are expressed with using xsE , and for 

the LSE waves they can be obtained with using through 
.xsH  

Taking into account boundary conditions (4) we write 
down field components for the LSM waves in the form 
of: 

( ) ( )

( ) ( )

( )

2 2

2 2

2 2

( ) sin ( / 2)sin ,

1 1
, ,

0, , .

i n l
xs xs y z
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nl nl
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κ κ

= +

∂ ∂= =
∂ ∂ ∂ ∂

− ∂ ∂= = =
∂ ∂

(20) 

The traverse structure of the xsE  field component of 

the LSM wave is described by function ( ) ( )i
xse x . This 

function can be found by the matrix method [3], applied 
for multizone waveguide case. For using of the expres-
sions obtained in the Ref. [3] in a resonator case it is poss-
ible to replace simply the continuous longitudinal wave 
number zk  with its discrete values l

zk . As a result we 

obatain 
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where ( )N
sA  are arbitrary constants, ( )i i

xs x sk k ω= , 

( )2 2 2 2 2/ ( ) ( )i n l
x i i y zk c k kω ε μ= − − , ( ) ( ) ( )i i

s sS S ω=  and 

transition matrix ( )iS  for the LSM wave is defined as 
follows 

 ( )

cos sin

sin cos

i ii
x i x ii

xi

i
i ix
x i x i

i

k w k w
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S
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k w k w

ε

ε
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. (22) 

Eigenfrequencies s mnlω ω≡  of the LSM wave are deter-

mined from the dispersion equation [3] 
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From the equations (15) for electromagnetic field com-
ponents of the LSE wave with accounting of boundary 
conditions we obtain the expressions 
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The transverse structure of the xsH  field component of 

the LSE wave is described with function ( ) ( )i
xsh x  having 

in resonator case the next expression 
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( )N
sD  are arbitrary constants, ( ) ( ) ( )i i

s sT T ω=  and the tran-

sition matrix ( )iT  for the LSE wave is defined as follows 

 ( )

cos sin

sin cos

i ii
x i x ii

xi

i
i ix
x i x i

i

k w k w
k

T
k

k w k w

μ

μ

⎛ ⎞−⎜ ⎟
⎜ ⎟≡
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (28) 

Eigen frequencies s mnlω ω≡  of the LSE wave are de-

termined from the dispersion equation 
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Let's write down now the norm of a field sN  defined 

by expressions (16) with use of eigenfunctions ( ) ( )i
xse x  

and ( ) ( )i
xsh x . 

For the LSM wave it is more convenient to define the 
norm using components of a magnetic field. Having subs-
tituted ysH  and zsH  from  Eq. (20) in the second defini-

tion of the norm (16), we obtain 
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N e dxε μ

πκ
−

=
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For the LSE wave it is more convenient to define the 
norm using components of a electric field. Having substi-
tuted ysE  and zsE  from Eq. (25) in the second definition 

of the norm (16), we obtain 
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22 ( )

,0 ,02
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I.e. norm of the LSE wave is defined with use only sin-
gle component of magnetic field, perpendicular to the 
dielectric slabs. 

CONCLUSION 
The set of the equations derived in the paper describes a 

self-consistent dynamics of relativistic electron bunches 
in the multizone dielectric resonator. 

Dynamics of bunches is described by motion equations 
for macroparticles where electromagnetic fields are speci-
fied by superposition of source functions in which sources 
are moving macroparticles. Analytical solutions for ex-
cited fields are presented as the total of potential field and 
a solenoidal field. The solenoidal field is presented in the 
form of decomposition on eigenfunctions of the LSM and 
of the LSE waves. Orthogonality conditions for these 
waves are found and values of norms for each kind of the 
wave are derived. 

The constructed theory allows to account nonlinear and 
group velocity effects in the multizone dielectric struc-
tures by simple way. 

REFERENCES 
 [1] C. Wang, V.P. Yakovlev, J.L. Hirshfield, “Rectangu-

lar dielectric-lined two-beam wakefield accelerator 
structure”, PAC’05, Knoxville, May 2005, TPAE013,  
p. 1333 (2005), http://www.JACoW.org. 

[2]  G.V.Sotnikov, T.C. Marshall, S.Y. Shchelkunov 
et.al. Two-Channel Rectangular Dielectric Wake 
Field Accelerator Structure Experiment. In Advanced 
Accelerator Workshop, AIP Conf. Proc. 1086, 2009, 
p. 415. 

[3] C. Wang, J.L. Hirshfield, Phys. Rev. ST Accel. 
Beams. 2006. V.9, No.3, 031301(18). 

[4] L. A. Vainstein, Electromagnetic Waves, Radio i 
Sviaz, Moscow, 1988(in Russian). 

[5] Yu.V. Egorov, Partially filled rectangular 
waveguides, Moskow, Sov. Radio, 1967(in Russian). 

THPD061 Proceedings of IPAC’10, Kyoto, Japan

4424

03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques

A14 Advanced Concepts


