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Because of its greater complexity, this lattice presented 
a greater challenge to producing an adequately detailed 
field map for CYCLOPS. With hard edges the tune values 
were sensitive to mesh size, and at some energies it was 
impossible to obtain orbit closure. But the use of sinu-
soidal edges was again effective. The tunes initially 
obtained with these [4] agreed moderately well with those 
published by Rees and Méot, though the values for νz 
diverged above 15 GeV. Subsequently we learnt that the 
latter’s studies were made after some small adjustments 
in magnet position and field profile. With these adjust-
ments included, the CYCLOPS results are almost identical 
to those of ZGOUBI (Figure 1). 

PROTON FFAG FOR ADSR 
C. Johnstone [11] has proposed a two-stage proton 

FFAG, operating at fixed frequency, to drive a sub-critical 
reactor. We have studied the second (250-1000 MeV)  
stage, softening the hard-edge field minimally with an 
Enge function. The CYCLOPS results agree well with those 
obtained using COSY (Figure 2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Betatron tunes and orbit time variation in the 
250-1000 MeV FFAG for ADSR (▬ CYCLOPS, • COSY).

ELECTRON MODEL FFAG “EMMA” 
EMMA [12] is a 10-20 MeV model of a 10-20 GeV muon 

LNS-FFAG for a neutrino factory, and is currently near-
ing completion at Daresbury. The lattice consists of 42 
doublet cells, where the offset quadrupoles provide both 
bending and a linear field gradient. 

Baseline (Design) Field 
As EMMA is intended to demonstrate the feasibility of 

LNS operation (resonance crossing, serpentine accelerat-
ion), a broad range of tuning is built in to Berg’s 

“Baseline” design [13], which assumes hard-edge mag-
netic fields. For CYCLOPS these were given minimal sinu-
soidal softening. The results are shown in Figure 3, along 
with those of other codes [14]. Agreement with ZGOUBI is 
excellent for all parameters. For νx and flight time CYCLOPS 
also agrees with Machida’s S code, for νy with Berg’s code. 

 

 

 
Figure3: Tunes and time of flight per cell in the EMMA 
Baseline field, as determined by various codes. 

Measured Field 
CYCLOPS has also been run on an early measurement of 

the combined field of the two quadrupole magnets. The 
results are shown in Fig. 4 along with those of Giboudot 
[15] using other codes and Berg for the Baseline field [13]. 
Agreement is good for the horizontal tune but poor for the 
vertical. In the case of flight time only relative values are 
plotted, so the vertical positions of the curves are of no 
significance. But there are real differences in the estim-
ates for the energy of the minimum, for reasons unknown. 
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Figure 4: Tunes and time of flight error per cell in the 
measured EMMA field, as determined by various codes. 

Accelerated Orbits 
We have also run accelerated orbits in both the Baseline 

and measured fields using the GOBLIN code. A 4.3π eV-μs 
electron bunch was tracked over 5 turns through 21 evenly 
spaced 89-kV cavities. The initial phase was chosen 
midway between the two cusp trajectories (calculated by 
integrating the time-of-flight errors from CYCLOPS). Fig. 5 
shows snapshots taken after passage through 0, 20, 41, 62, 
83, 104 and 125 cavities. For the Baseline field the two 
upper plots show development of the bunch for radial 
emittances εx = 250π and 1400π μm, similar to that 
presented by Méot [16]. For the measured field (bottom 
plot) the bunch distortion is greater and the beam gains 
less energy.  
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Figure 5: Energy-phase plots: (top) Baseline field, 
εx = 250π μm; (middle) Baseline field, εx = 1400π μm; 
(bottom) measured field, εx = 250π μm. 

REFERENCES 
[1] E.M. McMillan, Particle Accelerators, in Experi-

mental Nuclear Physics, III, 639-786 (Wiley, 1959) 
[2] M.M. Gordon, Part. Accel. 16, 39 (1984). 
[3] M.K.Craddock, Y.-N.Rao, Cyclotrons’07, 370 (2007). 
[4] M.K.Craddock,.Y.-N.Rao, PAC’09,.FR5REP114 (2009). 
[5] J.S. Berg, FFAG Workshop, BNL, October 2003, 
 http://www.cap.bnl.gov/mumu/conf/ffag-031013/Berg3.pdf 
[6] C. Johnstone, S. Koscielniak, PAC’07, 2951 (2007). 
[7] M.M. Gordon, T.A. Welton, ORNL-2765 (1959). 
[8] G.H. Rees, FFAG04 Workshop, KEK (2004) 

http://hadron.kek.jp/FFAG/FFAG04_HP/plenary/.... 
[9] F. Lemuet, F. Méot, G. Rees, PAC'05, 2693 (2005). 
[10] K. Symon, D.Kerst, et al., Phys. Rev. 103, 1837 (1956) 
[11] C. Johnstone, FFAG09 Workshop, Fermilab (2009). 
 http://indico.fnal.gov/materialDisplay.py?contribId=6

9&sessionId=19&materialId=slides&confId=2672 
[12] T.R. Edgecock, THXMH01, these proceedings. 
[13] J.S. Berg, NIM, A596, 276 (2008). 
[14] E. Keil, CERN-BE-2010-006 (2010). 
[15] Y. Giboudot, FFAG09 Workshop, Fermilab (2009). 
[16] F. Méot, EPAC06, 2080 (2006). 

Proceedings of IPAC’10, Kyoto, Japan THPD022

03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques

A12 FFAG, Cyclotrons 4321


