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Abstract 
The lattice of a Fixed Field Alternating Gradient 

(FFAG) accelerator normally has high symmetry. The 

whole ring consists of many identical cells which can be a 

simple FODO, doublet or triplet focusing unit. There is, 

however, no real reason for an FFAG lattice to have high 

symmetry, except for a linear nonscaling design which 

relies on high symmetry to avoid betatron resonances. We 

propose an FFAG lattice design with a superperiod that 

makes it possible to have long straight sections for 

injection, extraction and rf cavities. We discuss how to 

introduce a superperiod structure. The impact on dynamic 

aperture as well as the advantage of having long straight 

sections is presented. 

INTRODUCTION 

The lattice of a fixed field alternating gradient (FFAG) 

accelerator [1] consists of many identical small cells with 

a minimum focusing structure such as FODO, doublet, 

triplet, or pumplet [2], where F is a focusing magnet, D is 

a defocusing magnet and O is a drift space in between. 

One of the reasons not to choose a more complicated 

structure as is commonly found in the modern 

synchrotron lattice may be attributed to the historical 

background of the development. The FFAG accelerator 

was invented a few years after the invention of an 

alternating gradient focusing synchrotron. A synchrotron 

lattice at that time was similar to what we see as an FFAG 

lattice now. The CERN Proton Synchrotron has 20 

identical cells and the BNL Alternating Gradient 

Synchrotron has 24 identical cells, which were both 

designed and constructed in the 1950s. Since then the 

synchrotron lattice evolved with the introduction of many 

new ideas. Among them, a long straight insertion is a very 

practical idea which enables us to install a variety of 

devices in an accelerator. Beam injection and extraction 

from the ring becomes much easier with enough space, 

which is an obvious advantage. The dispersion suppressor 

in the arc and absence of finite dispersion functions in a 

long straight section are features commonly seen in the 

modern synchrotron. These optics can be calculated using 

software with various functions for optimization by 

introducing many families of bending and focusing 

magnets. On the other hand, all activities on FFAG 

accelerators were frozen in the middle of the 1960s. There 

was no chance of the lattice design of an FFAG 

incorporating the new feature in the optics design of a 

synchrotron. 

In fact, there is no need to keep the lattice structure 

with very high symmetry in an FFAG other than in a 

linear nonscaling FFAG. The operating tune is fixed 

independently of beam momentum in a scaling FFAG and 

in a nonlinear nonscaling FFAG and can be chosen 

anywhere in tune space. Although the high symmetry of 

the lattice helps to reduce the number of systematic 

resonances, it does not matter if a machine is operated at 

some distance from a resonance. The synchrotron lattice 

with only two or three superperiods proves that is the 

case. Only a linear nonscaling FFAG lattice is an 

exception. Because there is no chromaticity correction, 

the transverse tunes change in a wide range, from around 

0.4 to 0.1 in terms of tune per cell. Keeping very high 

symmetry with many small unit cells is the only way to 

avoid crossing systematic resonances. 

Nonetheless, there were not many activities to break the 

high degree of symmetry in scaling and nonlinear 

nonscaling FFAG lattices since the development restarted. 

It is mostly due to the lack of a design tool. Let us take 

the design of a scaling FFAG as an example. The magnet 

of a scaling FFAG has a field profile of rk , where r  is 

the radial coordinate with respect to the machine centre 

and k  is the field index defined as k = r B( ) dB dr( ) . 

Unlike a synchrotron, the design orbit is not determined 

by a piecewise constant magnetic field and the curvature 

of an orbit is a continuous function of longitudinal 

position. Although, at the beginning of the optics design, 

we must make an assumption of a piecewise constant 

field and obtain a rough idea of orbit shape and optics 

properties of an FFAG accelerator, the only way to find 

the exact orbit and optics is firstly to calculate the orbit 

iteratively and secondly to calculate the optics based on 

the linear fields along the orbit. It is not difficult to start 

with a guess and obtain the exact orbit and optics using 

the exact FFAG field profile. However, a proper software 

code is needed when the lattice has a complicated 

structure with many families of magnets. 

The FFAG lattice with a long straight section is not just 

an option for a design, but seems to be an essential design 

ingredient for future FFAG designs, especially to ease the 

injection and extraction components and the rf cavity. A 

tight space for an rf cavity causes significant orbit 

distortion when permeability materials are coupled with 

leakage fields of lattice magnets [3]. To increase the 

bunch intensity, H
-
 charge exchange injection is 

preferable and a long straight section is needed to 

accommodate the system. The advantage of large 

horizontal acceptance becomes clearer when an extraction 

system for a large emittance beam is available. In this 

paper, we will show the design criteria first. We will 

show an example. 
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SCALING LAW 

We will focus on the way to make a long drift section 

for a scaling FFAG. The same procedure can be applied 

to a nonlinear nonscaling FFAG based on the scaling 

FFAG design [4]. 

A scaling FFAG has two conditions [5]. One is that the 

orbits for different momenta are isomorphic. The other is 

that the betatron function scales linearly with orbit radius. 

These two conditions can be satisfied with the magnetic 

field profile of 

 

Bz = Bz,0

r

r0

 

 
 

 

 
 

k

F( )    (1) 

 
where Bz,0  is the vertical magnetic field at the radius of 

r0  and r0  is the reference radius. Notice that F( )  is an 

arbitrary function describing the dependence on the 
azimuthal coordinate. Focusing structure like FODO, 
triplet and pumplet etc. are simple examples of F( ) . 

However, F( )  can be a more complicated function as 

long as the overall focusing gives stable motion.  

 

Figure 1 (a): Footprint of a 12-fold symmetry FFAG 

lattice. Red blocks show magnets and green and blue lines 

are orbits of 0.243 GeV/c and 0.729 GeV/c, respectively. 

 

Figure 1 (b): Lattice functions of a quarter of the ring. 

The red and green lines show horizontal and vertical beta 

functions respectively. 

FOUR-FOLD SYMMETRY LATTICE  

As a first example, we examine the possibility of 

inserting a long straight section in a 12-fold symmetry 

lattice. In this example, each cell has a triplet focusing 

and the physical length of F and D magnets is equal. This 

can be used as a proton FFAG accelerating from 30 MeV 

(0.243 GeV/c) to 250 MeV (0.729 GeV/c). The footprint 

and the beta functions of the original lattice are depicted 

in Fig. 1 (a) and (b), respectively. By squeezing the 

magnets at four corners, relatively long straight sections 

appear, that gives the lattice four-fold symmetry. Figure 2 

(a) shows the footprint and the beta functions after 

squeezing. Because the field profile follows Eq. (1), 

transverse tunes are constant over the momentum range. 

The previous example demonstrates it is possible to 

have a long straight in an FFAG accelerator by moving 

magnets without introducing extra knobs. For some 

applications, it is already good enough. However, the 

quite noticeable change after introducing a long straight 

section is the modulation of the beta functions. The 

minimum and maximum beta functions become smaller 

and bigger, respectively. Fine adjustment of lattice 

parameters with a greater number of magnet families is 

required to flatten the beta functions. 

 

Figure 2 (a): Footprint of 4-fold symmetry FFAG. Orbits 

looks more square shape.  

FITTING BY CODE 

The fine adjustment should be done numerically with 

the aid of advanced computer software. Since we have a 

clear understanding of the optics dependence through Eq. 

(1), we will restrict attention to adjusting the magnet 

parameters for a single value of momentum.  

The procedure for the adjustment will be the following. 

Given the initial configuration of the lattice, the closed 

orbit and beta functions can be calculated. Any initial 

configuration can be tried, but obviously a configuration 

which is not so much different from the highly symmetric 

one and has stable optics has a better chance of leading to 

the solution. If the beta functions are larger than we 

expect, the phase advance is not what we want, and/or the 

beta functions are largely modulated, the magnet strength 

is varied. At this stage, we introduce families of magnets 

and each family can have a different strength. It is, 
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however, still preferable to keep some local symmetry to 

find the solution. We could make the magnet length and 

the distance between magnets as other free parameters for 

the fitting. However, we will show in the following 

examples of fitting only with variations in magnet 

strength.  

 

Figure 2 (b): Lattice functions of a quarter of the ring 

before flatting beta functions. 

 

Figure 3: Lattice functions of a quarter of the ring after 

flatting beta functions.  

Using this fitting process, the beta function in Fig. 2 (b) 

is flattened as shown in Fig. 3. In this example, three 

families of F magnets and two families of D magnets are 

defined as free parameters. The fitting goal is to reduce 

the maximum beta functions in horizontal and vertical 

directions separately. It leads to flatter beta functions. The 

parameters of both designs are listed in Table 1. 

DYNAMIC APERTURE  

Despite rich nonlinearities in a scaling FFAG lattice, 

the dynamic aperture is always very large if the tune is 

not located near a systematic resonance. If this is a result 

of a high degree of lattice symmetry, a lattice with 

superperiod may not preserve larger dynamic aperture. 

This has been checked with particle tracking for the 

lattice we described. 

The dynamic aperture was explored in the horizontal 

direction with fixed vertical initial amplitude of 10  mm 

mrad (normalized). A particle was tracked for 1000 turns 

to define the aperture. In order to compare dynamic 

aperture with similar tunes, the 12-fold lattice is retuned 

to (3.367, 3.225). The dynamics aperture becomes 4,000 

 mm mrad (normalized) for the four-fold lattice while is 

it 13,000  mm mrad for the 12-fold case. 

 

Table 1: Machida parameters 

parameters 12 fold 

symmetry 

4 fold w/o 

fitting 

4 fold w/ 

fitting 

Magnet 
length [m] 

0.262 0.262 0.262 

Drift length 

[m] 

0.829 1.964 (long) 

0.687 (short) 

1.964 (long) 

0.687 (short) 

Tune (H,V) (3.213,2.383) (3.130,2.346) (3.205,3.124) 

Radius [m] 6.251 6.251 6.251 

SUMMARY 

Without violating the scaling FFAG conditions, we 

have shown that long straight sections can be introduced 

into the lattice. Numerical optimization minimizes the 

modulation of the beta functions so that physical aperture 

does not deteriorate and there is only small reduction in 

dynamic aperture. A long straight section of 2 m or more 

makes injection and extraction much easier. 

In this report, long straight sections are inserted in the 

scaling FFAG lattice with moderate k  value. However, 

our final goal is to combine this technique and FFAG 

lattice with relatively high k  value [6]. This should open 

up many applications for an FFAG accelerator. 
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