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Abstract

Synchro-betatron resonances can lead to emittance
growth and the loss of luminosity. We consider the de-
tailed dynamics of a bunch near such a low order resonance
driven by crossing angles at the collision points. We char-
acterize the nature of diffusion and find that it is anomalous
and sub-diffusive. This affects both the shape of the beam
distribution and the time scales for growth. Predictions of
a simplified anomalous diffusion model are compared with
direct simulations.

INTRODUCTION
Transport of particles near resonances is still not a

well understood phenomenon. Often, without justification,
phase space motion is assumed to be a normal diffusion
process although at least one case of anomalous diffusion
in beam dynamics has been reported [1]. Here we will fo-
cus on the motion near synchro-betatron resonances which
can be excited by several means, including beams crossing
at an angle at the collision points as in the LHC. We will
consider low order resonances which couple the horizon-
tal and longitudinal planes, both for simplicity and to ob-
serve large effects over short time scales. While the tunes
we consider are not practical for a collider, nonetheless the
transport mechanisms we uncover are also likely to operate
at higher order resonances.

AMPLITUDE DIFFUSION
We consider the four 1st and 2nd order sideband reso-

nances around the third order horizontal resonance, i.e. the
resonances 3qx ± qs = n and 3qx ± 2qs = n. The vertical
tune is fixed at 0.32. Other beam parameters have values set
to design values in the LHC. In our simulation model the
only nonlinearity is that due to the beam-beam interaction
at two interaction points (IP) with the beams crossing at an
angle in the horizontal plane at one IP and the vertical plane
at the other IP. The beam-beam force vanishes at large am-
plitudes, hence particle motion will remain bounded but
they can still be transported to the closest physical aper-
ture such as a collimator. Since the beam-beam force is
defocusing with colliding proton beams, small transverse
amplitude particles will be at lower tunes than the nomi-
nal tunes. The beam-beam tune spread (� 0.007) from the
2 IPs is larger than the synchrotron tune (� 0.002), hence
when the nominal tunes lie on the difference resonances
(3,0,-1) and (3,0,-2) in the (qx, qy, qs) planes, some of the
particles in the distribution will straddle the 3rd order be-
tatron resonance (3,0,0). We expect therefore that the dif-
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Figure 1: Growth of the horizontal emittance (scaled by the
initial value) at the four resonances.
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Figure 2: Initial and final beam distributions in horizon-
tal position. The initial distributions are Gaussian. The
final horizontal distribution develops long tails and is not a
Gaussian.

ference resonances will have a larger impact on emittance
growth and lifetime.

Figure 1 shows the growth of the horizontal emittance
(scaled by initial values) at these four resonances. The hor-
izontal emittance grows more than five times for the (3,0,-
2) resonance and about 2.5 times for the (3,0,-1) resonance
while it is virtually unchanged for the sum resonances. The
change in vertical emittance for the (3,0,-2) resonance is
about 10% and there’s almost no change for the other reso-
nances.

The distributions of particle positions was studied start-
ing with a Gaussian distribution in both planes. Figure 2
shows the initial and final (at the end of 106 turns) distribu-
tion in positions. We find that the final horizontal distribu-
tion has long non-Gaussian tails and the distribution devel-
ops a cusp at the center. The final vertical distribution (not
shown here) stays Gaussian. Thus the synchro-betatron
resonances increase the emittance and also produce long
transverse tails. Normal diffusion in action is character-
ized by a linear growth of the variance over time. Figure
3 shows the growth of the variance in horizontal action at
different amplitudes and the monomial fits. At all ampli-
tudes, the growth is much slower than linear. The variance
increase is the largest at 1.5σ and decreases at larger ampli-
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Figure 3: Variance in the actions over time at a tune corre-
sponding to the resonance 3qx − 2qs = 1. Also shown are
the (barely visible) monomial fits to the data.
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Figure 4: The exponent αx (red, left vertical scale) and the
coefficient ΔJ2

x,0 (blue, right vertical scale) as a function
of the initial amplitude.

tudes. The increase in the vertical variance is smaller by a
few orders of magnitude but the growth rate is steeper. We
model the growth in the variance of the actions (Jx, Jy) as:
〈ΔJ2

x〉 = ΔJ2
x,0t

αx , 〈ΔJ2
y 〉 = ΔJ2

y,0t
αy For normal dif-

fusive behaviour, both the exponents (αx, αy) = 1 while
anomalous sub-diffusive behaviour is characterized by ex-
ponents < 1 and super-diffusive behaviour has exponents
> 1. Both exponents are < 1 at all amplitudes, but in many
regions αy is about twice αx, yet 〈ΔJ2

y 〉 grows much more
slowly because the constant coefficient ΔJ 2

y,0 is about five
orders of magnitude smaller than ΔJ 2

x,0. Figure 4 shows
the exponent αx and the constant coefficient 〈ΔJ 2

x,0〉 as
a function of the initial amplitude. At amplitudes below
1σ and above 4σ, αx � 0 implying no diffusion . The
diffusion is fastest at 1.7σ, the location of the peak in the
coefficient ΔJ2

x,0.

We can define diffusion coefficients in the usual man-
ner, e.g. Dx,x = V ar(Jx)/N , Dx,y = Covar(Jx, Jy)/N ,
where N is the total number of turns. Fig 5 shows that
the “diffusion coefficients” Dx,x calculated at a few am-
plitudes with x = y for the different resonance tunes.
We do not show here the dependence of the coefficients
Dx,x, Dx,y, Dy,y on both (Jx, Jy). There is a sharp rise in
these coefficients at ∼ 2.0σ for the (3,0,-1) resonance and
at ∼ 1.5σ for the (3,0,-2) resonance with a larger jump for
the latter. In the following we will focus on the (3,0,-2) res-
onance although the qualitative conclusions are applicable
to the other resonances. We can (without a priori justifica-
tion) use the diffusion coefficients in the normal diffusion
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Figure 5: The horizontal “diffusion” coefficients as a func-
tion of radial amplitude at tunes corresponding to the four
SBR tunes.

in action equation for the density distibution,

∂

∂t
ρ(Jx, Jy) =

1
2
∇i[Dij∇j ]ρ(Jx, Jy) (1)

Here (i, j) run over (x, y) and Dij are the diffusion coef-
ficients defined above. Numerically solving this diffusion
equation with the diffusion coefficients found above leads
to predictions that disagree spectacularly with the direct
particle tracking. For example, the solution to this diffu-
sion equation shows that about 20% of particles are lost
at a 6σ aperture within a few seconds while direct track-
ing shows an insignificant loss over this period. This is not
surprising given that the action does not grow as rapidly
as assumed by the diffusion equation. Clearly we need a
different transport equation to model the diffusion process.

CTRW MODEL FOR ANOMALOUS
DIFFUSION

The fact that the motion is sub-diffusive is to be expected
since the persistence of the KAM tori both below and above
the resonance islands will slow growth. Particles can cir-
culate around resonance islands for long periods of time
which can also lead to subdiffusion. We need to identify
the most plausible model for subdiffusion applicable to our
problem.

At the chosen tune of interest, the resonance islands in
horizontal phase space lie at around 2σ. Motion in their
vicinity but at slightly smaller amplitudes can be quite
complicated. Single trajectories starting from amplitudes
around 1.5σ explore much of phase space: regions well
below the islands, regions around the islands as well as
regions outside the islands. The motion jumps between
these regions with different amplitudes, and the time spent
in each region appears to be random. These are the usual
ingredients needed for the continuous time random walk
(CTRW) model [2] of anomalous diffusion where the time
at which a step occurs is also taken to be a random variable.
The CTRW model leads to a fractional diffusion equation
where the order of the time derivative is fractional.

The step size distribution is one of the quantities that
characterize a CTRW model. Figure 6 shows distributions
in horizontal step sizes for initial amplitudes of 0.1σ and
1.55σ respectively. The left plot in this figure is typical for
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Figure 6: Step size distributions. Left: initial amplitude
0.1σ. Here motion is quasi-periodic. Right: initial ampli-
tude 1.55σ. Here the motion is quasi-ergodic.

particles with amplitudes < 1.5σ as well as for particles
with amplitudes > 4σ. In fact this distribution appears to
be universal whenever the motion is quasi-periodic, e.g. at
all amplitudes and other tunes when they are far from res-
onances. The other distribution at 1.55σ where small step
sizes are dominant, is typical at intermediate amplitudes
where the motion is quasi-ergodic, in this case for ampli-
tudes in the range 1.5σ < a < 4.0σ. Thus the transition
from quasi-periodic motion to subdiffusive behaviour and
back to quasi-periodic motion is also seen in the step size
distribution.

A fractional diffusion equation for the density distribu-
tion function often used to describe subdiffusive behaviour
is [3]

∂

∂t
ρ(�r, t) = 0D

1−α
t ∇[Kα∇ · ρ(�r, t)] (2)

Here Kα is the diffusion coefficient and the operator
0D

1−α
t is defined as the integro-differential operator

0D
1−α
t =

1
Γ(α)

∂

∂t

∫ t

0

dt′
ρ(�r, t′)

(t − t′)1−α
(3)

In one dimension, when the diffusion coefficient Kα is con-
stant, it can be shown [3] that the mean squared displace-
ment is given by

〈x2(t)〉 ≡
∫

x2ρ(x, t)dx =
2Kα

Γ(1 + α)
tα (4)

If the exponent α is determined from a numerical calcula-
tion of 〈x2(t)〉, then it determines the value to be used in
the fractional diffusion equation. This diffusion equation
in one space dimension and constant Kα can be solved in
terms of the so-called Fox function H 2,0

1,2 which has the se-
ries representation [3]

ρ(x, t) =
1√

4Kαtα

∞∑
n=0

(−1)n

n!Γ(1 − α(n + 1)/2)

(
x2

Kαtα

)n/2

(5)
Fig 7 shows the density distribution function given by

Eq (5) for α = 0.2 (a typical value seen in Fig 4) and three
values of t. This solution has some of the features seen in
the numerical simulation, seen in Fig 2, such as the long
non-Gaussian tails and the cusp at the center of the distri-
bution. However Eq (5) does not represent the true solution
since it assumes a constant diffusion coefficient Kα wbile

�4 �2 2 4
x

0.1

0.2

0.3

0.4

Ρ

Figure 7: Density distribution function which is the so-
lution to Eq (5) with α = 0.2 for three different times
t = 1, 10, 100. Compare with Fig 2.

Figure 8: Frequency diffusion in the transverse plane over
amplitudes from 0-6 σ at the resonance 3qx − 2qs = 1.

in our case both the diffusion coefficient and power law
depend on the phase space amplitude. A numerical solu-
tion of the fractional diffusion equation will be necessary
to treat anomalous beam diffusion.

Finally we turn to frequency map analysis [4], another
diagnostic method of detecting the transition from quasi-
periodic to irregular motion. When motion is not quasi-
periodic, tunes are not well defined on a phase space curve
and hence are more likely to “diffuse”. A figure of merit is
defined as Dq =

√
(qx,2 − qx,1)2 + (qy,2 − qy,1)2 where

(qx,1, qx,2), (qy,1, qy,2) are the tunes of a particle calcu-
lated over the two sets of N consecutive turns. Figure 8
shows a contour plot (on a log scale) of this index Dq over
coordinate space. The red regions show the zones with
largest “tune diffusion”, this occurs mostly in the region
2 ≤ x ≤ 4, 3 ≤ y ≤ 4 and also in a small arc at a ra-
dial amplitude of 1.5σ. These regions roughly match the
quasi-ergodic regions identified by the amplitude diffusion
and the step size distribution functions.

Our goal is to understand the transport process and to
predict emittance growth rates and beam lifetimes. Quasi-
ergodic and subdiffusive motion in the vicinity. of reso-
nances as found here may be understood by anomalous dif-
fusion models but further development is necessary.
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