THOARA  —  Accelerator Technology   (27-May-10   09:30—10:30)

Chair: C. Adolphsen, SLAC, Menlo Park, California

Paper Title Page
THOARA01 IHEP 1.3 GHz SRF Technology R&D Progress 3630
 
  • J. Gao, Y.L. Chi, J.P. Dai, T.M. Huang, C. H. Li, S.P. Li, Z.Q. Li, Q. Ma, W.M. Pan, F. Qiu, Y. Sun, G.W. Wang, J.Y. Zhai
    IHEP Beijing, Beijing
  • R. Ge, T.X. Zhao
    IHEP Beiing, Beijing
 
 

1.3 GHz superconducting radio-frequency (SRF) technology is one of the key technologies for the ILC and future XFEL / ERL projects of China. With the aim to develop this technology, IHEP has started a program to build an SRF Accelerating Unit in the frame of ILC collaboration. The SRF Accelerating Unit contains a 9-cell 1.3 GHz superconducting cavity, a short cryomodule, a high power input coupler, a tuner, a low level RF system and a high power RF source, etc. The unit can undergo beam test and used as the booster for any SRF linac based test facility. Recent progress of the components R&D is presented.

 

slides icon

Slides

 
THOARA02 Preparation Phase for the 1.3 GHz Cavity Production of the European XFEL 3633
 
  • W. Singer, S. Aderhold, A. Brinkmann, R. Brinkmann, J.A. Dammann, J. Iversen, G. Kreps, L. Lilje, A. Matheisen, W.-D. Möller, D. Reschke, J. Schaffran, A. Schmidt, J.K. Sekutowicz, X. Singer, H. Weise
    DESY, Hamburg
  • P.M. Michelato
    INFN/LASA, Segrate (MI)
 
 

The preparation phase for the European XFEL cavity production includes a number of actions. Material issues: qualification of high purity niobium vendors, verifying of large grain material as a possible option, construction of the scanning device for the niobium sheets. Mechanical fabrication issues: accommodation of the TESLA cavity design to the XFEL demands, device construction for RF measurement of components, integration of the helium tank and it's welding to the cavity into the fabrication sequence, documentation and data transfer, application of a new high resolution camera for inspection of the inside surface. Treatment and RF measurement: establishing the XFEL recipe, in particular the final surface treatment (final 40 μm EP or short 10 μm Flash BCP), and the cavity preparation strategy (vertical acceptance test with or without helium tank welded, with or without assembly of HOM antennas), construction of the cavity tuning machine. About 50 prototype cavities are produced at the industry, treated (partially in industry and partially at DESY) and RF-tested at DESY. The XFEL requirements are fulfilled with a yield of approx. 90%.

 

slides icon

Slides

 
THOARA03 ILC Marx Modulator Development Program Status 3636
 
  • C. Burkhart, A.L. Benwell, T.G. Beukers, M.A. Kemp, R.S. Larsen, D.J. MacNair, M.N. Nguyen, J.J. Olsen, T. Tang
    SLAC, Menlo Park, California
 
 

A Marx-topology klystron modulator is under development for the International Linear Collider (ILC) project*. It is envisioned as a lower cost, smaller footprint, and higher reliability alternative to the present, bouncer-topology, baseline design. The application requires 120 kV (±0.5%), 140 A, 1.6 ms pulses at a rate of 5 Hz. The Marx constructs the high voltage pulse by combining, in series, a number of lower voltage cells. The Marx employs solid state elements; IGBTs and diodes, to control the charge, discharge and isolation of the cells. Active compensation of the output is used to achieve the voltage regulation while minimizing the stored energy. The developmental testing of a first generation prototype, P1, has been completed. This modulator has been integrated into a test stand with a 10 MW L-band klystron, where each is undergoing life testing. Development of a second generation prototype, P2, is underway. The P2 is based on the P1 topology but incorporates an alternative cell configuration to increase redundancy and improve availability. Status updates for both prototypes are presented.


* ILC Reference Design Report, http://www.linearcollider.org/cms/?pid=1000437

 

slides icon

Slides