08 Applications of Accelerators, Technology Transfer and Industrial Relations

U04 Security

Paper Title Page
MOPEA043 Quasi-Monoenergetic Photon Source Based on Electron-Positron In-Flight Annihilation 169
 
  • A. Afanasev, R.J. Abrams, C.M. Ankenbrandt, K.B. Beard, R.P. Johnson, T.J. Roberts, C. Y. Yoshikawa
    Muons, Inc, Batavia
  • M. Popovic
    Fermilab, Batavia
 
 

We study electron-positron in-flight annihilation as a potential source of quasi-monoenergetic photon (or gamma-ray) beams. A high-intensity tunable-energy (1.5 MeV to 15 MeV) gamma source has many potential uses in medical, industrial and security applications. Several electron-positron collision geometries are considered: a) head-on; b) collinear; and c) positron beam incident on a fixed electron target. We analyze advantages of each of the geometries in order to optimize parameters of the generated gamma-ray beams.

 
MOPEA044 Quasi-monochromatic Positrons using Dipole and Wedge 172
 
  • R.J. Abrams, C.M. Ankenbrandt, C. Y. Yoshikawa
    Muons, Inc, Batavia
 
 

Positrons produced by electrons impinging on a target cover a broad momentum range. By bending the positrons 180° in a dipole magnetic field the momenta are dispersed according to their momenta along the exit plane of the magnet. A wedge-shaped absorber placed at the exit plane can reduce the momenta accordingly to produce a quasi-monochromatic beam of positrons. Simulation results are presented for 2 to 10 MeV/c quasi-mono-chromatic positrons produced by 75 MeV electrons on a tungsten target.

 
MOPEA045 Positron Production for a Compact Tunable Intense Gamma Ray Source 175
 
  • C. Y. Yoshikawa, R.J. Abrams, A. Afanasev, C.M. Ankenbrandt, K.B. Beard
    Muons, Inc, Batavia
  • D.V. Neuffer
    Fermilab, Batavia
 
 

A compact tunable gamma ray source has many potential uses in medical and industrial applications. One novel scheme to produce an intense beam of gammas relies on the ability to create a high flux of positrons. We present various positron production methods that are compatible with this approach for producing the intense beam of gammas.