08 Applications of Accelerators, Technology Transfer and Industrial Relations

T28 Industrial Collaboration

Paper Title Page
MOPEB071 Low Voltage Very High Current SCR Controlled Magnet Power Supply 433
 
  • P.A.E. Elkiaer, A. Jensen, C. Nielsen, C. Soerensen
    Danfysik A/S, Jyllinge
 
 

Danfysik A/S has developed a novel approach in constructing a low voltage, very high current and highly stable magnet power supply using parallel SCR converter stages. The design is well suited for driving superconducting magnets in a two quadrant operation. A ±10V 18kA power supply has been built to EPFL Lausanne with four parallel converters showing excellent performances and a very low installation time. One of the major difficulties in paralleling SCR converters is the current sharing between the individual converters, which becomes even harder at low voltages. The novel design, which will be presented here, assures current sharing within a few percent in the whole working area. The power supply has been developed having the following highlights in mind: High accuracy and stability (50ppm.), Good current sharing between parallel coupled converters without band width degradation, Very high current, One or two quadrant operation and Computer controlled. This paper describes the power converter topology ensuring the excellent current sharing.

 
MOPEB072 Tracking of RRR Value and Microstructure in High Purity Niobium along the Production Chain from the Ingot to the Finished Cavity 435
 
  • S. Grawunder, F. Schoelz, B. Spaniol
    W.C. Heraeus GmbH, Materials Technology Dept., Hanau
  • R. Grill, W. Simader
    Plansee Metall GmbH, Reutte
  • M. Heilmaier, D. Janda
    TU Darmstadt, Darmstadt
  • W. Singer, X. Singer
    DESY, Hamburg
 
 

The RRR value of high pure Nb is showing strong relations to the individual production steps. Mainly the different kind of internal stresses caused by the several production steps are resulting in the variation of the RRR value. This work shows the RRR values along the complete production chain from the molten Ingot till to the finished cavity. The influence of the RRR value caused by stresses and the release of that stresses by vacuum annealing is shown.

 
MOPEB073 Single Crystal Niobium Development 438
 
  • H. Umezawa, K. Takeuchi
    Tokyo Denkai Co., Ltd., Tokyo
  • F. Furuta, T. Konomi, K. Saito
    KEK, Ibaraki
  • K. Nishimura
    TKX Corporation, Osaka
 
 

KEK and Tokyo Denkai have developed new niobium ingot slicing technique. 150 pieces of the large grain niobium discs can be sliced in two days by using of this technique. Tokyo Denkai installed the slicing machine in December 2009. During the development of the slicing technique, we found that crystal growth mechanism in Electron Beam Melting. It gave us the suggestion to make a single crystal niobium ingot. This paper describes the production process of low cost and short production time niobium discs and single crystal niobium ingot development.

 
MOPEB074 Calculation and Design of a High Voltage Electron Accelerator 441
 
  • J. Yang, T. Hu, X. Hu, D. Li, P. Tan, T. Yu
    HUST, Wuhan
 
 

High voltage electron accelerators are currently utilized in various industrial applications for Crosslinking Compounds, Sterilization, Polymerization, and vulcanization etc. The conceptual design of a high voltage electron accelerator for radiation technologies is considered in the paper. The key components of the electron accelerator are introduced and analyzed. Relevant physical parameters of the accelerator are then obtained. In order to verify the rationality of the design, beam optical paths are calculated by TRANSPORT program. The beam envelopes show that the physical design of this system can meet the requirement of engineering.

 
MOPEB075 Successfully Managing the Experimental Area of a Large Physics Experiment, from Civil Engineering to the First Beams 444
 
  • F. Butin
    CERN, Geneva
 
 

The role of "Experimental Area Manager" supported by a well organized, charismatic and motivated team is absolutely essential for managing the huge effort needed for a multi-cultural, multi-disciplinary installation of cathedral-size underground caverns housing a billion dollar physics experiment. Between the years 2002 and 2008, we supervised and coordinated the ATLAS work site at LHC, from the end of the civil engineering to the first circulating beams, culminating with 240 workers on the site, 24 hours a day, 7 days a week, with activities taking place simultaneously on the surface, in the 60 m shafts and in the 100 m underground experimental cavern. We depict the activities preparation scheme (including tasks ranging from the installation of 280 ton cranes to super-delicate silicon detectors), the work-site organization method, the safety management that was a top priority throughout the whole project, and the open-communication strategy that required maintaining permanent public visits. The accumulation of experience enables us to summarize the critical success factors for a timely and successful completion of such a vast and complex project.

 
MOPEB076 Mobile CT-System for In-situ Inspection in the LHC at CERN 447
 
  • L.R. Williams, F. Caspers, J.M. Dalin, J.Ph. G. L. Tock
    CERN, Geneva
  • V. Haemmerle, C. Sauerwein, I. Tiseanu
    RAYSCAN, Meersburg
 
 

For the inspection of certain critical elements of the LHC machine a mobile computed tomography system has been developed and built. This instrument has to satisfy stringent space, volume and weight requirements in order to be usable and transportable to any interconnection location in the LHC tunnel. Particular regions of interest in the interconnection zones between adjacent magnets are the plug in modules (PIM), the soldered splices in the superconducting bus-bars and the interior of the quench diode container. This system permits detailed inspection of these regions without needing to break the cryo vacuum. Limited access for the x-ray tube and the detector required the development of a special type of partial tomography, together with suitable reconstruction techniques for 3 D volume generation from radiographic projections. We present the layout of the complete machine and the limited angle tomography as well as a number of radiographic and tomographic inspection results.

 
WEIRA01 Experience of Academia-industry Collaboration on Accelerator Projects in Asia 2444
 
  • A. Yamamoto
    KEK, Ibaraki
 
 

Japan has a long history of academia-industry collaboration on accelerator technology development. A recent example is superconducting cavity manufacture for the linear collider as well as a number of collaboration in superconducting magnets for circular colliders and physics experiments. Experience with Academia-industry Collaboration on Accelerator Projects in Japan and global Asia will be presented.

 

slides icon

Slides

 
WEIRA02 Present Status of the Accelerator Industry in Asia 2447
 
  • C.-X. Tang
    TUB, Beijing
 
 

Different kinds of accelerators, such as electron linacs, cyclotrons, microtrons, HV DC accelerators, synchrotrons and betatrons, can be used in radiotherapy, Non-Destructive Test, and irradiations. The accelerator industry in Asia almost covers all of the accelerators and application areas above. In this paper, the status and the trend of the accelerator industry in Asia will be introduced. Typical examples, in the areas of medial and industrial applications, will be described about their technology, achievement and relationship with universities or institutes. For the accelerator technology is strongly relied on the development of components, we will also briefly introduce the industry in Asia of some components, such as rf power sources, HV power sources (modulator), magnets and so on.

 

slides icon

Slides

 
WEIRA03 Experience of Academia-industry Collaboration on Accelerator Projects in Europe 2452
 
  • D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès
 
 

European industry has participated in the LHC Project for technology development, component design and system construction. A good relationship in academia-industry collaboration has led to successful results for the project. Industry plays an important role for component design, manufacture and system construction in the XFEL project. The long history of academia-industry collaboration in the accelerator field in Europe is presented.

 

slides icon

Slides

 
WEIRA04 Present Status and Future Outlook of the Accelerator Industry in Europe 2456
 
  • R. Uršič
    I-Tech, Solkan
 
 

After LHC completion, maintenance and operation of the facility provide a good opportunity for accelerator industry in Europe. Other big facilities like XFEL, FAIR, FERMI@ELETTRA and MAX IV are now under way. The challenges of the accelerator industry in Europe and its future outlook will be presented.

 

slides icon

Slides