07 Accelerator Technology

T09 Room-Temperature Magnets

Paper Title Page
MOPEB001 Multi-function Corrector Magnet 274
 
  • L.O. Dallin, D.G. Bilbrough
    CLS, Saskatoon, Saskatchewan
 
 

Storage rings require corrector magnets for a variety of tasks. Foremost are small dipole magnets for both horizontal and vertical correction. In light sources, for example, other corrector magnets are needed to compensate for the effect of changing insertion device operation points. These can include quadrupole, skew quadrupole, sextupole and skew sextupole corrections. As well octupole magnets may be desirable to improve dynamic aperture in small emittance lattices. One magnet can perform all these tasks. This is achieved by having separate windings with separate power supplies on an octopole yoke. The simultaneous excitation of any combination of modes can be achieved through superposition. Corrections are necessarily limited to avoid saturation effects that will degrade the superposition.

 
MOPEB003 Design and Performance of Printed Circuit Steering Magnets for the FLASH Injector 277
 
  • K. Flöttmann
    DESY, Hamburg
 
 

Printed circuit boards offer a simple method for the design of hysteresis free, compact air coil magnets. The emphasis for the steering magnets developed for the FLASH injector is placed on a high integrated field strength for a short magnetic length to cope with space limitations in the injector beam line. The possibility to combine a pair of orthogonal steerers at the same longitudinal position has been realized by two layers of printed circuit boards. Design principles and magnetic measurements will be discussed.

 
MOPEB004 Magnetic Modeling, Measurements and Sorting of the CNAO Synchrotron Dipoles and Quadrupoles 280
 
  • C. Priano, G. Bazzano, D. Bianculli, E. Bressi, I. De Cesaris, M. Pullia
    CNAO Foundation, Milan
  • M.C.L. Buzio, R. Chritin, D. Cornuet, J.M. Dutour, L. Vuffray
    CERN, Geneva
  • E. Froidefond
    LPSC, Grenoble
  • C. Sanelli
    INFN/LNF, Frascati (Roma)
 
 

CNAO is a synchrotron accelerator presently under commissioning in Pavia. The aim of this accelerator is to treat tumors with hadrons and to perform advanced clinical and radiobiological research. The CNAO will start treating patients with protons (60-250 MeV range) and carbon ions (120-400 MeV/u range) in three treatment rooms with four beam lines. Future upgrade with gantries is foreseen. This paper describes the design, magnetic measurements and sorting criterion used for the sixteen synchrotron main dipoles and twenty-four quadrupoles. The magnetic measurements results are compared with magnetic simulation.

 
MOPEB006 Design Study of Combined Function Type Magnets for HiSOR-II 286
 
  • S. Hanada
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • A. Miyamoto, S. Sasaki
    HSRC, Higashi-Hiroshima
 
 

The HiSOR-II is a storage ring planned as a successive machine of HiSOR, a present ring at Hiroshima Synchrotron Radiation Center. This accelerator has the circumference equal to or less than 50 m, and it has the emittance about 14 nm-rad and aims at the beam energy of 700 MeV. In the HiSOR-II project, we decided to adopt electromagnets with combined function. This type magnet has an advantage for constructing a small storage ring by reducing the total number of magnet, though it has a difficulty for the independent tuning of multipole field components. In addition, we decided to share a single return yoke between a bending magnet and adjacent quadrupole magnets. In this paper, we discuss about a possible magnetic interference between a bending magnet and a quadrupole magnet. Calculation is made with magnetic field simulation cord RADIA to analyze interference effect and examine the possibility of adoption to HiSOR-II storage ring. Also, we perform the tracking simulation of the beam with the mapping data of a magnetic field provided by this three-dimensional magnetic field analysis. By the simulation, the dynamic aperture is determined.

 
MOPEB007 Multi-Element Corrector Magnet for the Storage Ring NewSUBARU 289
 
  • Y. Shoji
    NewSUBARU/SPring-8, Laboratory of Advanced Science and Technology for Industry (LASTI), Hyogo
 
 

A multi-element octupole-base corrector magnet is designed and fabricated. The new corrector magnet will be installed in the electron storage ring NewSUBARU in place of vertical steering (skew dipole) magnets. It has coil windings to produce skew quadrupole, skew sextupole, normal octupole, and the skew dipole field. The skew dipole element is used to achieve vertical steering. The skew quadrupole and the skew sextupole elements are for the resonance correction. The normal octupole element is used to control the higher order dispersion function and the higher order momentum compaction factor. In this design the main coil is wound around the return yoke instead of the pole. We expect improvement of the beam lifetime and injection efficiency during normal operation as well as improved isochronism during extreme quasi-isochronous operation. In designing the magnet, careful consideration is given to field interference caused by a neighboring magnet, set close to the corrector magnet of comparable yoke and bore diameter dimensions. The magnetic field with field interference is calculated using OPERA-3D.

 
MOPEB008 Magnetic Field Measurement required for High Luminosity Accelerator 292
 
  • K. Egawa, M. Masuzawa
    KEK, Ibaraki
 
 

The KEKB is a high luminosity accelerator which achieved the highest luminosity record of 2.1x1034. It requires the precise and stable beam control to keep its high luminosity continually. Slight change of the magnetic field may easily deteriorate the performance of the collisions of the very small and thin beams. The field measurement accuracy better than 10-4 has been already achieved. The resolution of the measurement has reached to a few 10-5. But it is known by the beam studies that the field change less than 10-4 may cause deterioration of the luminosity. The requirement on the stability of magnetic field will be stricter for future nano beam colliders. We have studied the effects of the following conditions on the magnetic field by using some KEKB magnets: changes of the magnetic field due to air or cooling water temperature, changes due to initialization conditions, field coupling between the adjacent magnets, effect of excitation of the adjacent magnet and behavior of the magnetic field under polarity change have been measured. These studies are not only useful for the existing KEKB but also important for future nano beam accelerators.

 
MOPEB009 Low Leakage Field Septa for J-PARC Main Ring Injection System Upgrade 295
 
  • K. Fan, K. Ishii, H. Matsumoto, N. Matsumoto
    KEK, Ibaraki
 
 

Injection into the J-PARC main ring is implemented by 4 kickers and 2 pulsed septa at 3 GeV in a long straight section. To accommodate the injection beam of 54 pmm.mrad, both septa have large physical acceptance of 81 pmm.mrad. However, large aperture leads to large end fringe field interfereing the circulating beam and causing beam loss, which has been observed even at low beam intensity during the beam commissioning. To provide users a proton beam with high beam power, the injection beam intensity will increase greatly in future, which creates difficulties for the present injection system. To accommodate these high intensity beams with low beam loss, the injection system needs to be upgraded. Taking account the strong space charge effects, even larger physical is needed to reduce the localized beam loss, which creates severer end fringe leakage field. This paper will discuss the problems encountered in operating the present septa, and give an optimized design for the new septa.

 
MOPEB010 Development of a High Radiation Resistant Septum for JPARC Main Ring Injection System 298
 
  • K. Fan, K. Ishii, H. Matsumoto, N. Matsumoto
    KEK, Ibaraki
 
 

The J-PARC is a high intensity proton accelerator complex, which consists of a LINAC, a Rapid Cycling Synchrotron (RCS) and a Main Ring (MR). The MR injection system employs a high-field septum to deflect the incoming beam from the RCS, which has been used for the beam commissioning study with low beam intensity successfully. Relative large beam losses in the injection area have been observed, which is proportional to the injection beam intensity. In future, the beam intensity will increase about 100 times to realize high beam power (~MW) operation required from neutrino experiments. The beam loss at the injection region is expected increase greatly due to the space charge effects, which creates severe radiation problems. Since the present injection septum coil is organic insulated, which will be destroyed under such a severe irradiation quickly. To cope with this problem, a new high radiation resistant injection septum magnet is developed, which uses inorganic insulation material (Mineral Insulated Cable - MIC) to prevent the septum from radiation damage. This paper investigates different effects caused by the MIC and gives an optimization design.

 
MOPEB011 Magnetic Field Ripple Reduction of Main Magnets of the J-PARC Main Ring using Trim Coils 301
 
  • S. Igarashi, T. Oogoe, H. Someya, S. Yamada
    KEK, Ibaraki
  • Y. Kuniyasu
    MELCO SC, Tsukuba
  • S. Nakamura
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

Efforts have been made to reduce the magnetic field ripple of the bending, quadrupole and sextupole magnets of the J-PARC main ring using the trim coils of the magnets. The quadrupole magnet has 24 turn main coil and 11 turn trim coil per pole those can be considered as a primary winding and a secondary winding of a transformer. When the trim coil is shorted, the induced trim coil current cancels the field ripple. The field ripple of the quadrupole magnet was reduced by a factor of 6 by shorting trim coil. The trim coil current, however, deforms the acceleration field pattern if the coil is shorted all the time of the current pattern of flat bottom, acceleration, flat top and recovery. The MOSFET relay was used to short the coil and to reduce the field ripple during the flat bottom and flat top. The circuits were built for the quadrupole and sextupole magnets. The plan has been made to wind optimized trim coils for the bending magnets.

 
MOPEB013 LEBT with Hybrid Magnets in a Proton Linac for Compact Neutron Source 304
 
  • S. Ushijima, H. Fujisawa, M. Ichikawa, Y. Iwashita, H. Tongu, M. Yamada
    Kyoto ICR, Uji, Kyoto
 
 

A compact neutron source using Li(p,n) or Be(p,n) reaction is proposed. The proton linac consists of ECR ion source, LEBT(Low Energy Beam Transport), RFQ linac and post accelerator. We assume that energy of the proton beam is 3MeV and its peak current is 40 mA operated at the repetition rate is 25Hz with the pulse width of 1ms. The beam from the ion source should be matched to the RFQ, where solenoid coils can handle the large current beam in this LEBT section. To reduce energy consumption in LEBT we're trying to design the Hybrid Electromagnet that consists of solenoid coils and permanent magnets. We use PANDIRA, TRACE-2D, and PBGUNS computer codes in order to simulate the magnetic field and the beam transport through LEBT. In this paper the design of this magnet and the result of its beam matching based on simulation will be presented.

 
MOPEB014 Status of the PLS-II Magnet Design and Fabrication 307
 
  • D.E. Kim, H.S. Han, Y.-G. Jung, K.R. Kim, H.-G. Lee, S.H. Nam, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk
 
 

Pohang Light Source (PLS) is planning a major upgrade of the storage ring to meet the more demanding requirement from the synchrotron light users. The main features of the major upgrade are (1) increasing the electron beam energy from 2.5 GeV to 3.0 GeV for more higher energy X-ray photons, (2) decreasing the electron beam emittance from 1.89 nm to 5.8 nm to increase the photon brilliances, and (3) increasing the number of straight sections to install the insertion devices from 10 to 20 to meet the demand for insertion devices. in the upgraded PLS (PLS-II), there will be 24 combined function dipole magnets, 96 quadrupole magnets, and 144 sextupole magnets with some auxiliary magnets for electron beam injection. In this report, the physical design features, mechanical aspects of the magnet design are described.

 
MOPEB016 Development of Upgraded Magnetic Instrumentation for CERN's Real-time Reference Field Measurement Systems 310
 
  • M.C.L. Buzio, P. Galbraith, S.S. Gilardoni, D. Giloteaux, G. Golluccio, C. Petrone, L. Walckiers
    CERN, Geneva
  • A. Beaumont
    EBG MedAustron, Wr. Neustadt
 
 

At CERN, the control of five of the accelerators in the injector chain (i.e. PS, PS Booster, SPS, LEIR and AD) is based upon real-time magnetic measurements in a reference magnet. These systems ("B-trains") include usually a field marker to signal the achievement of a given field value, complemented by one or more pick-up coils to integrate flux changes. Recently, some issues have been raised concerning long-term reliability and possible performance improvements, in terms of both resolution and operational flexibility, for these systems. This paper reports the results of R&D activities launched to address these concerns, namely: the development of a novel ferrite gradient compensator to enable dynamic NMR field marking in the PS' combined function magnets; and the preliminary design of a standardized electronic acquisition and conditioning system aimed at enabling the requested improvements and at facilitating rapid maintenance interventions.

 
MOPEB017 Magnetic Measurements of Permanent and Fast-pulsed Quadrupoles for the CERN LINAC4 Project 313
 
  • M.C.L. Buzio, P. Arpaia, O. Dunkel, D. Giloteaux, G. Golluccio, A.M. Lombardi, F. Mateo Jimenez, S. Ramberger
    CERN, Geneva
 
 

Linac 4 is the injector upgrade currently under construction at CERN to improve luminosity and reliability for the whole accelerator chain. This machine will include about 120 high-gradient, 20 mm aperture Halbach-array permanent quadrupoles (PMQ) housed in the Drift Tube tanks, as well as about 80 electromagnetic quadrupoles (EMQ) with power cycles approx. 2 ms long. This paper is concerned with the magnetic measurements carried out at CERN on the first batch of PMQ, including several prototypes from different manufacturers, as well as those done on several spare Linac 2 EMQs reused in Linac 4's 3 MeV test stand. We first describe the test setup, focusing our attention on a prototype test bench based on technology developed for the LHC and able to carry out high-precision harmonic measurements in both continuously-rotating and stepping-coil mode (FAME*). Next we present the results obtained in terms of integral field strength and quality, with special emphasis on the analysis of very fast eddy current transients in the EMQs. Finally, we discuss the expected impact of these findings on the operation of the machine.


* N. R. Brooks et al, "Estimation Of Mechanical Vibration Of The LHC Fast Magnetic Measurement System", IEEE Transactions on Applied Superconductivity, vol. 18, No. 2 , 2008.

 
MOPEB020 Measurement of Accelerator Lattice Magnet Prototypes for TPS Storage Ring 319
 
  • F.-Y. Lin, C.-H. Chang, H.-H. Chen, J.C. Huang, M.-H. Huang, C.-S. Hwang, J.C. Jan, C.Y. Kuo, C.-S. Yang
    NSRRC, Hsinchu
 
 

Taiwan Photon Source (TPS) is a new third generation synchrotron storage ring with energy 3 GeV, which consists of 24 double-bend cells and its circumference is 518.4 m. Various accelerator lattice magnets which consist of 48 bending magnets, 240 quadrupoles and 168 multifunction sextupole magnets. All magnets pole profiles, edge shim and magnet end chamfer were designed in TOSCA and RADIA magnetic computation code. In order to verify the magnetic field quality of computation code, prototype magnets have been manufactured in this year. Two measurement systems, hall probe and rotating coils, were used for magnetic field mapping. This paper presents magnetic field mapping results of prototype magnets and compared with original magnetic circuit designs.

 
MOPEB022 Magnet Field Crosstalk Effect of TPS Storage Ring Magnets 325
 
  • C.Y. Kuo, C.-H. Chang, C.-S. Hwang
    NSRRC, Hsinchu
 
 

The free space between magnets of TPS storage ring is very tight, especially the space between quadrupole and sextupole magnets. The minimum space between the yoke of quadrupole and sextupole is about 150mm, and the space between coils is only 10mm. In this case, the significant magnetic field distortions could have an impact on the performance of machine. Two magnets simulation compare to the individual magnet were performed in TOSCA 3D model. The crosstalk effect shows that the sextupole component increases from 0.0004% to 0.04% in the quadrupole magnet and the quadrupole component increases from 0.0008% to 0.06% in the sextupole magnet. We discuss this crosstalk effect and how to decrease the effect with appropriate shielding.