06 Beam Instrumentation and Feedback

T22 Machine Protection

Paper Title Page
TUOCMH03 Initial Experience with the Machine Protection System for LHC 1277
 
  • R. Schmidt, R.W. Assmann, B. Dehning, M. FERRO-LUZZI, B. Goddard, M. Lamont, A.P. Siemko, J.A. Uythoven, J. Wenninger, M. Zerlauth
    CERN, Geneva
 
 

Nominal beam parameters at 7TeV/c will only be reached after some years of operation, with each proton beam having a stored energy of 360MJ. However, a small fraction of this energy is sufficient to damage accelerator equipment or experiments in case of uncontrolled beam loss. The correct functioning of the machine protection systems is vital during the different operational phases already for initial operation. When operating the complex magnet system, with and without beam, safe operation relies on the protection and interlock systems for the superconducting circuits. For safe injection and transfer of beam from SPS to LHC, transfer line parameters are monitored, beam absorbers must be in the correct position and the LHC must be ready to accept beam. At the end of a fill and in case of failures beams must be properly extracted onto the dump blocks, for some failures within less than few hundred microseconds. Safe operation requires many systems: beam dumping system, beam interlocks, beam instrumentation, equipment monitoring, collimators and absorbers, etc. We describe the commissioning of the LHC machine protection system and the experience during the initial operation.

 

slides icon

Slides

 
WEPEA005 Beam Position Interlock System for the LNLS 4 Tesla Superconducting Wiggler 2478
 
  • F.H. Cardoso, J.F. Citadini, S.R. Marques, X.R. Resende, R.M. Seraphim
    LNLS, Campinas
 
 

The main facility of the Brazilian Synchrotron Light Laboratory is a 93 meters circumference, 1.37 GeV storage ring. Recently, the first superconducting insertion device was installed in the machine. This 4 T ID produces powerful beams that can damage the non-cooled parts of the accelerator vessel in the case of a miss-steered beam, even with a relatively large vacuum chamber cross section. In this paper we present the design details and the first operational results of the electronic beam position interlock system. Topics about redundancy engineering will be discussed as well.

 
WEPEB068 Feasibility Tests of the Beam Halo Monitoring System for Protecting Undulator Permanent Magnets against Radiation Damage at XFEL/SPring-8 2851
 
  • H. Aoyagi, T. Bizen, N. Nariyama
    JASRI/SPring-8, Hyogo-ken
  • Y. Asano, T. Itoga, H. Kitamura, T. Tanaka
    RIKEN/SPring-8, Hyogo
 
 

A beam halo region of an electron beam at a linear accelerator might hit the undulator magnets and degrade undulator permanent magnets. An interlock sensor is indispensable to protect the magnets against radiation damage. We have been developing an electron beam halo monitor using diamond detectors for an interlock sensor at the X-ray free electron laser facility at SPring-8 (XFEL/SPring-8). The diamond detectors are operated in photoconductive mode. Pulse-by-pulse measurements are adopted to suppress the background noise efficiently. The feasibility tests of this monitor have been performed at the SPring-8 compact SASE source (SCSS) test accelerator for XFEL/SPring-8, and the results will be summarized.

 
WEPEB069 LHC Beam Loss Measurements and Quench Level Abort Threshold Accuracy 2854
 
  • M. Sapinski, B. Dehning
    CERN, Geneva
  • A. Priebe
    Poznań University of Technology, Poznań
 
 

The LHC beam loss measurement system is mainly used to trigger the beam abort in case a magnet coil quench level is approached. The predicted heat deposition in the superconducting coils of the magnets have been determined by particle shower simulation codes, while the liquid helium cooling capacity of the system has been both simulated and measured. The results have been combined to determine the abort thresholds. Measurements of the energy depositions of lost protons from the initial beams in the LHC are used to determine the accuracy of the beam abort threshold settings. The simulation predictions are reviewed and compared with the measurement results.

 
WEPEB070 Particle Shower Simulations and Loss Measurements in the LHC Magnet Interconnection Regions 2857
 
  • C. Kurfuerst, B. Dehning, E.B. Holzer, A. Nordt, M. Sapinski
    CERN, Geneva
 
 

Particle losses in the LHC arcs are mainly expected in the interconnection region between a dipole and quadrupole magnet. The maximal beam size, the maximal orbit excursion and aperture changes cause the enhancement of losses at this location. Extensive Geant4 simulations have been performed to characterise this particular region to establish beam abort settings for the beam loss monitors in these areas. Data from first LHC beam loss measurements have been used to check and determine the most likely proton impact locations. This input has been used to optimise the simulations used for the definition of thresholds settings. The accuracy of these settings is investigated by comparing the simulations with actual loss measurements.

 
WEPEB071 The CLIC Machine Protection 2860
 
  • M. Jonker, E.B. Holzer, S. Mallows, D. Manglunki, G. Morpurgo, Th. Otto, M. Sapinski, F. Tecker, J.A. Uythoven
    CERN, Geneva
 
 

The proposed Compact Linear Collider (CLIC) is based on a two-beam acceleration scheme. The energy of high intensity, low energy drive beams is extracted and transferred to low intensity, high energy main beams. Direct ionization loss by the beam particles is the principal damage mechanism. The total charge gives a single drive beam-train a damage potential that is two orders of magnitude above the level causing structural damage in copper. For the main beam, it is the extreme charge density due to the microscopic beam size that gives it a damage potential of four orders of magnitude above the safe level. The machine protection system has to cope with a wide variety of failures, from real time failures (RF breakdowns, kickers misfiring), to slow equipment failures, to beam instabilities (caused by e.g. temperature drifts, slow ground motions). This paper discusses the baseline for the CLIC machine protection system which is based on passive, active and permit based protection. As the permit based protection depends on the measured performance of the previous pulse, the bootstrap procedure with safe beams and stepwise increase in beam intensities, is also discussed.

 
WEPEB072 First Operation of the Abort Gap Monitor for LHC 2863
 
  • T. Lefèvre, S. Bart Pedersen, A. Boccardi, E. Bravin, A. Goldblatt, A. Jeff, F. Roncarolo
    CERN, Geneva
  • A.S. Fisher
    SLAC, Menlo Park, California
 
 

The LHC beam dump system relies on extraction kickers that need 3 microseconds to rise up to their nominal field. As a consequence, particles crossing the kickers during this rise time will not be dumped properly. The proton population during this time should remain below quench and damage limits at all times. A specific monitor has been designed to measure the particle population in this gap. It is based on the detection of Synchrotron radiation using a gated photomultiplier. Since the quench and damage limits change with the beam energy, the acceptable population in the abort gap and the settings of the monitor must be adapted accordingly. This paper presents the design of the monitor, the calibration procedure and the detector performance with beam.

 
WEPEB073 The CERN Beam Interlock System: Principle and Operational Experience 2866
 
  • B. Puccio, A. Castañeda, M. Kwiatkowski, I. Romera, B. Todd
    CERN, Geneva
 
 

A complex Machine Protection System has been designed to protect the LHC machine from an accidental release of the beam energy, with about 20 subsystems providing status information to the Beam Interlock System (BIS). Only if the subsystems are in the correct state for beam operation, the BIS receives a status flag and beam can be injected into LHC. The BIS also relays commands from the connected subsystems in case of failure for emergency extraction of beam to the LHC Beam Dump Block. To maintain the required level of safety of the BIS, the performance of the key components is verified before every fill of the machine and validated after every emergency beam dump before beam operation is allowed to continue. This includes all critical paths, starting from the inputs from connected system triggering a beam dump request, followed by the correct interruption and propagation sequence of the two redundant beam permit loops until the final extraction of the beam via the LHC beam dumping system. In this paper we report about the experience with the BIS that has been deployed for some years in the SPS (as LHC injector), in the transfer lines between SPS and LHC and recently in LHC.

 
WEPEB074 Requirements of CLIC Beam Loss Monitoring System 2869
 
  • M. Sapinski, B. Dehning, E.B. Holzer, M. Jonker, S. Mallows, Th. Otto
    CERN, Geneva
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire
 
 

The Compact Linear Collider (CLIC) is a proposed multi-TeV linear electron-positron collider being designed by a world-wide collaboration. It is based on a novel two-beam acceleration scheme in which two beams (drive and main beam) are placed in parallel to each other and energy is transferred from the drive beam to the main one. Beam losses on either of them can have catastrophic consequences for the machine because of high intensity (drive beam) or high energy and small emittance (main beam). In the framework of machine protection, a Beam Loss Monitoring system has to be put in place. This paper discusses the requirements for the beam loss system in terms of detector sensitivity, resolution, dynamic range and ability to distinguish losses originating from various sources. A particular attention is given to the two-beam module where the protection from beam losses is particularly challenging and important.

 
WEPEC022 Beam Behavior due to Crab Cavities Break down 2938
 
  • K. Nakanishi, Y. Funakoshi, M. Tobiyama
    KEK, Ibaraki
 
 

Crab cavities were installed in KEKB in 2007. The function of the cavity is to tilt the bunch of the beam in the longitudinal direction. But if the RF phase gets out of control, the cavity kicks the beam like a steering magnet. To avoid this unwanted kick, the RF phase must be controlled well. In beam operation, some disturbances may occur such as a discharge, a quench, etc. When such disturbances occur, it is very difficult to control the RF phase precisely. We can't trust measured RF phase at that time. In KEKB, beam is aborted quickly when a disturbance is detected. Beam behavior before detect the disturbances has been investigated. We discuss following items. (1)How fast should the beam be aborted after detecting disturbances? (2)How fast should RF be turned off after detecting disturbances? (3)What a kind of disturbance is harmful? (4)Is the beam abort necessary at all? (Is just to turn RF off OK?)