05 Beam Dynamics and Electromagnetic Fields

D03 High Intensity in Circular Machines - Incoherent Instabilities, Space Charge

Paper Title Page
TUYMH02 Electron Cloud at Low Emittance in CesrTA 1251
 
  • M.A. Palmer, J.P. Alexander, M.G. Billing, J.R. Calvey, C.J. Conolly, J.A. Crittenden, J. Dobbins, G. Dugan, N. Eggert, E. Fontes, M.J. Forster, R.E. Gallagher, S.W. Gray, S. Greenwald, D.L. Hartill, W.H. Hopkins, D.L. Kreinick, B. Kreis, Z. Leong, Y. Li, X. Liu, J.A. Livezey, A. Lyndaker, J. Makita, M.P. McDonald, V. Medjidzade, R.E. Meller, T.I. O'Connell, S.B. Peck, D.P. Peterson, G. Ramirez, M.C. Rendina, P. Revesz, D.H. Rice, N.T. Rider, D. L. Rubin, D. Sagan, J.J. Savino, R.M. Schwartz, R.D. Seeley, J.W. Sexton, J.P. Shanks, J.P. Sikora, E.N. Smith, C.R. Strohman, H.A. Williams
    CLASSE, Ithaca, New York
  • F. Antoniou, S. Calatroni, M. Gasior, O.R. Jones, Y. Papaphilippou, J. Pfingstner, G. Rumolo, H. Schmickler, M. Taborelli
    CERN, Geneva
  • D. Asner
    Carleton University, College of Natural Sciences, Ottawa, Ontario
  • L. Boon, A.F. Garfinkel
    Purdue University, West Lafayette, Indiana
  • J.M. Byrd, C.M. Celata, J.N. Corlett, S. De Santis, M.A. Furman, A. Jackson, R. Kraft, D.V. Munson, G. Penn, D.W. Plate, M. Venturini
    LBNL, Berkeley, California
  • B.T. Carlson
    Grove City College, Grove City, Pennsylvania
  • T. Demma
    INFN/LNF, Frascati (Roma)
  • R.T. Dowd
    ASCo, Clayton, Victoria
  • J.W. Flanagan, P. Jain, K. Kanazawa, K. Kubo, K. Ohmi, H. Sakai, K. Shibata, Y. Suetsugu, M. Tobiyama
    KEK, Ibaraki
  • D. Gonnella
    Clarkson University, Potsdam, New York
  • W. Guo
    BNL, Upton, Long Island, New York
  • K.C. Harkay
    ANL, Argonne
  • R. Holtzapple
    CalPoly, San Luis Obispo, CA
  • J.K. Jones, A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • D. Kharakh, J.S.T. Ng, M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
  • M.C. Ross, C.-Y. Tan, R.M. Zwaska
    Fermilab, Batavia
  • L. Schächter
    Technion, Haifa
  • E.L. Wilkinson
    Loyola University, Chicago, Illinois
 
 

The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. Finally a range of EC mitigation methods have been deployed and tested. Measurements of cloud density and its impact on the beam under a range of conditions will be presented and compared with simulations. The effectiveness of a range of mitigation techniques will also be discussed.

 

slides icon

Slides

 
TUPEA076 Electron Cloud Measurements of Coated and Uncoated Vacuum Chambers in the CERN SPS by Means of the Microwave Transmission Method 1497
 
  • F. Caspers, S. Federmann, E. Mahner, P.C. Pinto, D. Seebacher, M. Taborelli
    CERN, Geneva
  • B. Salvant
    EPFL, Lausanne
  • C. Yin Vallgren
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg
 
 

Electron cloud is a limitation to increasing the beam current in the CERN SPS in the frame of an intensity upgrade of the LHC complex. Coating the vacuum chamber with a thin amorphous carbon layer is expected to reduce the electron cloud build-up. Three SPS straight sections have been coated to study the performance of this carbon coating. The microwave transmission method is one possible way to monitor electron cloud and hence to test the effect of the coating. In this paper the evolution of the experimental setup for measurements of the electron cloud using LHC type beams with different bunch spacing will be described. Due to the low revolution frequency of about 43 kHz serious electromagnetic compatibility problems and intermodulation have been found. These effects and their mitigation are described. Finally we present the measurement results illustrating the possible reduction due to the carbon coating.

 
TUPEB038 Nonlinear Dynamics Induced by 1-D Model of Pinched Electron Cloud 1608
 
  • G. Franchetti
    GSI, Darmstadt
  • F. Zimmermann
    CERN, Geneva
 
 

The presence of an electron cloud in an accelerator generates a number of interesting phenomena. In addition to electron-driven beam instabilities, the electron "pinch" occurring during a beam-bunch passage gives rise to a highly nonlinear force experienced by individual beam particles. A simple 1-dimensional model for the effect of the electron pinch on the beam reveals a surprisingly rich dynamics. We present the model and discuss simulation results.

 
TUPD002 Simulation and Observation of the Space Charge Induced Multi-Stream Instability of LinacμBunches in the SIS18 Synchrotron 1916
 
  • S. Appel, T. Weiland
    TEMF, TU Darmstadt, Darmstadt
  • O. Boine-Frankenheim
    GSI, Darmstadt
 
 

For the future operation as an injector for the FAIR project the SIS18 synchrotron has to deliver intense and high quality ion bunches with high repetition rate. One requirement is that the initial momentum spread of the injected coasting beam should not exceed the limit set by the SIS18 rf bucket area. Also the Schottky spectrum should be used to routinely measure the momentum spread and revolution frequency directly after injection. During the transverse multi-turn injection the SIS18 is filled withμbunches from the UNILAC linac at 36 MHz. For low beam intensities theμbunches debunch within a few turns and form a coasting beam with a Gaussian-like momentum spread distribution. With increasing intensity we observe persistent current fluctuations and an accompanying pseudo-Schottky spectrum. We will explain that the multi-stream instability of theμbunch filaments is responsible for the turbulent current spectrum that can be observed a few 100 turns after injection. The current spectrum observed in the SIS18 and the results from a longitudinal simulation code will compared to an analytical model of the multi-stream instability induced by the space charge impedance.

 
TUPD003 Electron Cloud Studies for SIS-18 and for the FAIR Synchrotrons 1919
 
  • F.B. Petrov, T. Weiland
    TEMF, TU Darmstadt, Darmstadt
  • O. Boine-Frankenheim
    GSI, Darmstadt
 
 

Electron clouds generated by residual gas ionization pose a potential threat to the stability of the circulating heavy ion beams in the existing SIS-18 synchrotron and in the projected SIS-100. The electrons can potentially accumulate in the space charge potential of the long bunches. As an extreme case we study the accumulation of electrons in a coasting beam under conditions relevant in the SIS-18. Previous studies of electron clouds in coasting beams used Particle-In-Cell (PIC) codes to describe the generation of the cloud and the interaction with the ion beam. PIC beams exhibit much larger fluctuation amplitudes than real beams. The fluctuations heat the electrons. Therefore the obtained neutralization degree is strongly reduced, relative to a real beam. In our simulation model we add a Langevin term to the electron equation of motion in order to account for the heating process. The effect of natural beam fluctuations on the neutralization degree is studied. The modification of the beam response function as well as the stability limits in the presence of the electrons is discussed. Finally we will also address the electron accumulation in long bunches.

 
TUPD004 Linear Coupling with Space Charge in SIS18 1922
 
  • W.M. Daqa
    IAP, Frankfurt am Main
  • O. Boine-Frankenheim, I. Hofmann, V. Kornilov, J. Struckmeier
    GSI, Darmstadt
 
 

For high current synchrotrons and for the SIS18 operation as booster of the projected SIS100 it is important to improve the multi-turn injection efficiency. This can be achieved by coupling the transverse planes with skew quadrupoles, which can move the particles away from the septum. Linear betatron coupling by skew quadrupole components in SIS18 including space charge effect was studied in an experiment using different diagnostic methods during the crossing of the difference coupling resonance. The beam loss was measured using a fast current transformer, the transverse emittance exchange was observed using a residual gas monitor and the coupled tunes were obtained from the Schottky noise spectrum. We compared the experimental results with simulation using PARMTRA which is a code developed at GSI.

 
TUPD005 Analysis of THz spectra and bunch deformation caused by CSR at ANKA 1925
 
  • M. Klein, N. Hiller, P.F. Tavares
    KIT, Karlsruhe
  • A.-S. Müller, K.G. Sonnad
    FZK, Karlsruhe
 
 

The ANKA light source is regularly operated with a low momentum compaction factor lattice where short bunches are created for the generation of coherent synchrotron radiation (CSR). Short bunches with high electron density can generate strong self fields which act back on the bunch. This can lead to bunch shape deformation and a microbunching instability which were studied theoretically for the ANKA low alpha parameters (Klein et al. PAC 09). We extended these studies to a comparison of calculated electron distributions and bunch profiles measured with a streak camera. The Haissinski equation was solved for the CSR impedance to obtain a prediction for the distortion of the bunches for different bunch lengths and bunch currents. The comparison shows that the theory predicts a much stronger deformation caused by CSR than the streak camera observes. However, high frequency components of measured FTIR spectra show a clear indication for strong deformation or small

 
TUPD006 3D PIC Computation of a Transversal Tune Shift caused by an Electron Cloud in a Positron Storage Ring 1928
 
  • A. Markoviḱ, G. Pöplau, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock
 
 

The electron cloud, which is initially presumed as a homogeneous distribution of static electrons, changes its transverse centroid position very fast during the passage of even a single bunch. This is due to the strong focusing transverse field of the highly relativistic positron bunch. As the density of the electrons near the beam axis grows, its impact on the beam becomes stronger. The interaction of the electron cloud with the bunch results with the shift of the betatron tune of the coherent dipole motion of the beam. In this paper we simulated the dipole tune shift of the beam interacting with the electron cloud by taking also in to account the own space-charge forces of the electrons which strongly affect the motion of the electrons during the passage of the bunch. We computed the tune shift for different transverse size and density of the electron cloud.

 
TUPD007 Peculiar Variations in Bunch Length Observed at KEKB 1931
 
  • T. Ieiri
    KEK, Ibaraki
 
 

KEKB, an asymmetric electron/positron double-ring collider, utilizes the crab cavity to perform the head-on collision at the interaction point. We observed peculiar phenomena at the transition from the collision to non-collision, where the bunch length slightly changed, even though the beam current and the RF related parameters were almost constant. We also observed that the transverse beam size of both beams changed at the transition. An experimental study was carried out to investigate whether the bunch length would change or not, when the vertical beam size was intentionally changed. The bunch length was measured using a monitor based on the beam spectrum with a resolution of 0.01 mm. We found that the bunch length slightly changed together with the vertical beam size under non-colliding condition. We expect that the change in the bunch length is not caused by the colliding effects, but is related to the longitudinal space charge transformed from the transverse plane. Since the longitudinal space charge effect is negligible for the relativistic beams, some tilting effect of a bunch is suspected.

 
TUPD009 Study of the Beam Dynamics for the 'Fast Extraction' Operating Scenario of the J-PARC Main Ring 1937
 
  • A.Y. Molodozhentsev, T. Koseki, M.J. Shirakata, M. Tomizawa
    KEK, Ibaraki
  • A. Ando, J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

During the early J-PARC Main Ring commissioning and the machine operation with the moderate beam power the 'fast extraction' bare working point has been chosen to provide the machine operation in the safe regime. We discuss main experimental results obtained so far and compare with the results of the computational model of the machine, including the first experimental approach to minimize the effect of the 'sum' linear coupling resonance. The strategy to increase the beam power without changing the operational working point is presented by keeping the moderate space-charge detuning. The advantage of the second harmonic MR RF cavity, including the estimation of the beam losses during the injection and acceleration processes, is discussed.

 
TUPD010 Simulation of Longitudinal Emittance Control in J-PARC RCS 1940
 
  • M. Yamamoto, M. Nomura, A. Schnase, T. Shimada, H. Suzuki, F. Tamura
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • E. Ezura, K. Hara, K. Hasegawa, C. Ohmori, M. Tada, A. Takagi, K. Takata, M. Yoshii
    KEK, Ibaraki
 
 

The Longitudinal emittance in J-PARC RCS should be controlled to accelerate a high intensity proton beam with minimal beam loss. In order to study and minimize the beam loss during acceleration, the optimized way to add the 2nd higher harmonic rf has been calculated by a particle tracking code. Furthermore, the bunch shape at RCS extraction should be controlled and optimized for the MR injection. For this purpose, the optimum RCS acceleration pattern has been calculated. We describe the simulation results and the comparison with the beam test.

 
TUPD011 Intrabeam Scattering at Low Temperature Range 1943
 
  • P.-CH. Yu, J. Wei
    TUB, Beijing
  • Z.Q. He
    Tsinghua University, Beijing
  • H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • A. Sessler
    LBNL, Berkeley, California
  • Y. Yuri
    JAEA/TARRI, Gunma-ken
 
 

During the beam crystallization process, the main heating source is Intra-beam scattering (IBS), in which the Coulomb collisions among particles lead to a growth in the 6D phase space volume of the beam. The results of molecular dynamics (MD) simulation have shown an increase of heating rate as the temperature is increased from absolute zero, but then a peak in the heating rate, and subsequent decrease with ever increasing temperature*. This phenomenon has been carefully studied by Y. Yuri, H. Okamoto, and H. Sugimoto**. On the other hand, in the traditional IBS theory valid at high temperatures, heating rate is monotonically increasing as the temperature becomes lower***. In this paper we attempt to understand the "matching" at low temperatures between the MD results and traditional IBS theory, by including many body effects in the traditional IBS theory. In particular the Debye shielding is included. We shall present how the traditional theory is modified by shielding, and show how this effect improves the "matching" with the results from MD.


* J. Wei, H. Okamoto, and A. Sessler, Phys. Rev. Lett. 80, 2606
** Y.Yuri, H. Okamoto, and H. Sugimoto, J. Phys. Soc. Jpn. 78, 124501
***A. Piwinski, Lect. Notes Phys. 296, 297 (1988)

 
TUPD012 A Characteristics Study for Cold Ion Beam Momentum Spread at HIRFL-CSR 1946
 
  • L.J. Mao, G.H. Li, J. Li, J.W. Xia, J.C. Yang, X.D. Yang, Y.J. Yuan
    IMP, Lanzhou
 
 

Two electron cooling devices have been used at HIRFL-CSR in order to provide high quality heavy ion beams for nuclear and atomic research. The momentum spread is one of the most important characteristics of the beam quality. At HIRFL-CSR, the momentum spread is measured directly with the aid of longitudinal Schottky spectra system. In this paper, the measurements for various ion species are presented. At relatively high intensity, longitudinal Schottky spectra is double peak due to collective phenomena and the momentum spread can be obtained by fitting the spectra. The dependence of momentum spread on stored particle number is proportional to N**a. Moreover, the heating factor was investigated after switching off the electron cooling. The residual gas scattering, the intrabeam scattering and instabilities are studied according to the measured data.

 
TUPD013 Assessment of CERN PSB Performance with Linac4 by Simulations of Beams with Strong Direct Space Charge Effects 1949
 
  • C. Carli, M. Chanel, B. Goddard, M. Martini, D. Quatraro, M. Scholz
    CERN, Geneva
  • M. Aiba
    PSI, Villigen
 
 

The performance of the CERN PS Booster (PSB) synchrotron is believed to be limited mainly by direct space charge effects at low energy. The main motivation to construct Linac4 is to raise the PSB injection energy to mitigate direct space charge effects. At present, simulation of the injection and the ow energy part of the cycle aim at defining Investigations on the influence of parameters of the injected beam on the performance of the PSB are described.

 
TUPD014 Simulations of Space Charge Effects in Low Energy Electrostatic Storage Rings 1952
 
  • A.I. Papash
    MPI-K, Heidelberg
  • O.E. Gorda
    GSI, Darmstadt
  • A.I. Papash
    JINR, Dubna, Moscow Region
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire
 
 

Electrostatic storage rings have proven to be invaluable tools for atomic and molecular physics. Due to the mass independence of the electrostatic rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged bio-molecules. However, earlier measurements showed strong space charge limitations; probably linked to non-linear fields that cannot be completely avoided in such machines. The nature of these effects is not fully understood. In this contribution, we present the results from simulating an electrostatic storage ring under consideration of non-linear fields as well as space charge effects using the computer code SCALA.

 
TUPD015 Accurate Simulation of the Electron Cloud in the Fermilab Main Injector with VORPAL 1955
 
  • P. Lebrun, P. Spentzouris
    Fermilab, Batavia
  • J.R. Cary
    CIPS, Boulder, Colorado
  • P. Stolz, S.A. Veitzer
    Tech-X, Boulder, Colorado
 
 

Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes Yee-type E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the 6D phase space occupied by the electrons. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of retarded field analyzers and microwave transmission experiments are ongoing.

 
TUPD018 Electron-cloud Build-up Simulations in the Proposed PS2: Status Report 1958
 
  • M.A. Furman
    LBNL, Berkeley, California
  • R. De Maria, Y. Papaphilippou, G. Rumolo
    CERN, Geneva
 
 

A replacement for the PS storage ring is being considered, in the context of the future LHC accelerator complex upgrade, that would likely place the new machine (the PS2) in a regime where the electron-cloud (EC) effect might be an operational limitation. We report here our present understanding of the ECE build-up based on simulations. We focus our attention on the bending magnets and the field-free regions, and consider both proposed bunch spacings of 25 and 50 ns. The primary model parameters exercised are the peak secondary emission yield (SEY) δmax, and the electron-wall impact energy at which SEY peaks, Emax. By choosing reasonable values for such quantities, and exploring variations around them, we estimate the range for the EC density ne to be expected in nominal operation. We present most of our results as a function of bunch intensity Nb, and we provide a tentative explanation for a curious non-monotonic behavior of ne as a function of Nb. We explore the sensitivity of ne to other variables such as the beam pipe radius in the field-free regions.

 
TUPD019 Theoretical Studies of TE-Wave Propagation as a Diagnostic for Electron Cloud 1961
 
  • G. Penn, J.-L. Vay
    LBNL, Berkeley, California
 
 

The propagation of TE waves is sensitive to the presence of an electron cloud primarily through phase shifts generated by the altered dielectric function, but can also lead to polarization changes and other effects, especially in the presence of magnetic fields. These effects are studied theoretically and also through simulations using WARP-POSINST. Full electromagnetic simulations are performed for CesrTA parameters, and used as a benchmark for simplified phase shift estimates that are also implemented in WARP/POSINST. Nonlinear effects such as electron heating are also examined.

 
TUPD020 Studies of Space Charge Effects in the Proposed CERN PS2 1964
 
  • J. Qiang, R.D. Ryne
    LBNL, Berkeley, California
  • R. De Maria
    BNL, Upton, Long Island, New York
  • A. Macridin, P. Spentzouris
    Fermilab, Batavia
  • Y. Papaphilippou
    CERN, Geneva
  • U. Wienands
    SLAC, Menlo Park, California
 
 

A new proton synchrotron, the PS2, is under design study to replace the the current proton synchrotron at CERN for the LHC upgrade. Nonlinear space charge effects could cause significant beam emittance growth and particle losses and limit the performance of the PS2. In this paper, we report on studies of the potential space-charge effects at the PS2 using three-dimensional self-consistent macroparticle tracking codes, IMPACT, MaryLie/IMPACT, and Synergia. We will present initial benchmark results among these codes. Effects of space-charge on the emittance growth, especially due to synchrotron coupling, and the aperture sizes will also be discussed.

 
TUPD021 Method to Extract Transfer Maps in the Presence of Space Charge in Charged Particle Beams 1967
 
  • E.W. Nissen, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois
  • S.L. Manikonda
    ANL, Argonne
 
 

This research involves a method for combining the intricate diagnostic tools for calculating quantities of interest such as tunes, dispersion and resonances from the single particle map of the system, with an accurate approximation of space charge effects on the beam. The space charge calculation involves a novel method of potential integration which allows for rapid Taylor expansion around singularities. This will allow for an accurate computation of space charge induced tune shifts and resonances, as well as allowing for experimental setups to discriminate between space charge caused issues, and lattice caused issues. The code used was COSY Infinity 9.0 which uses Differential Algebras to determine numerical derivatives to arbitrary order, and Normal Form methods to extract information from the map. The effects of space charge are added to the map using Strang splitting. External confounding factors such as the earths magnetic field are also addressed.

 
TUPD022 CesrTA Retarding Field Analyzer Modeling Results 1970
 
  • J.R. Calvey, J.A. Crittenden, G. Dugan, S. Greenwald, Z. Leong, J.A. Livezey, M.A. Palmer
    CLASSE, Ithaca, New York
  • C.M. Celata
    Cornell University, Ithaca, New York
  • M.A. Furman, M. Venturini
    LBNL, Berkeley, California
  • K.C. Harkay
    ANL, Argonne
 
 

Retarding field analyzers (RFAs) provide an effective measure of the local electron cloud density and energy distribution. Proper interpretation of RFA data can yield information about the behavior of the cloud, as well as the surface properties of the instrumented vacuum chamber. However, due to the complex interaction of the cloud with the RFA, particularly in regions of high magnetic field, understanding these measurements can be nontrivial. This paper will examine different methods for interpreting RFA data via cloud simulation programs. Possible techniques include postprocessing the output of a simulation code to predict the RFA response, and incorporating an RFA model into the program itself.

 
TUPD023 CesrTA Retarding Field Analyzer Measurements in Drifts, Dipoles, Quadrupoles and Wigglers 1973
 
  • J.R. Calvey, Y. Li, J.A. Livezey, J. Makita, R.E. Meller, M.A. Palmer, R.M. Schwartz, C.R. Strohman
    CLASSE, Ithaca, New York
  • S. Calatroni, G. Rumolo
    CERN, Geneva
  • K.C. Harkay
    ANL, Argonne
  • K. Kanazawa, Y. Suetsugu
    KEK, Ibaraki
  • M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
 
 

Over the course of the CesrTA program, the Cornell Electron Storage Ring (CESR) has been instrumented with several retarding field analyzers (RFAs), which measure the local density and energy distribution of the electron cloud. These RFAs have been installed in drifts, dipoles, quadrupoles, and wigglers; and data have been taken in a variety of beam conditions and bunch configurations. This paper will provide an overview of these results, and give a preliminary evaluation of the efficacy of cloud mitigation techniques implemented in the instrumented vacuum chambers.

 
TUPD024 Progress in Studies of Electron-cloud-induced Optics Distortions at CesrTA 1976
 
  • J.A. Crittenden, J.R. Calvey, G. Dugan, D.L. Kreinick, Z. Leong, J.A. Livezey, M.A. Palmer, D. L. Rubin, D. Sagan
    CLASSE, Ithaca, New York
  • M.A. Furman, G. Penn, M. Venturini
    LBNL, Berkeley, California
  • K.C. Harkay
    ANL, Argonne
  • R. Holtzapple
    CalPoly, San Luis Obispo, CA
  • M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
 
 

The Cornell Electron Storage Ring Test Accelerator (CesrTA) program has included extensive measurements of coherent tune shifts for a variety of electron and positron beam energies, bunch current levels, and bunch train configurations. The tune shifts have been shown to result primarily from the interaction of the beam with the space-charge field of the beam-induced low-energy electron cloud in the vacuum chamber. Comparison to several advanced electron cloud simulation program packages has allowed determination of the sensitivity of these measurements to physical parameters such as the synchrotron radiation flux, its interaction with the vacuum chamber wall, the beam emittance and lattice optics, as well as to those of the various contributions to the electron secondary yield model. We report on progress in understanding the cloud buildup and decay mechanisms in magnetic fields and in field-free regions, addressing quantitatively the precise determination of the physical parameters of the modelling. Validation of these models will serve as essential input in the design of damping rings for future high-energy linear colliders.