04 Hadron Accelerators

A04 Circular Accelerators

Paper Title Page
MOPD001 Spin Dynamics Simulations At AGS 666
 
  • F. Méot
    CEA, Gif-sur-Yvette
  • H. Huang, W.W. MacKay, T. Roser
    BNL, Upton, Long Island, New York
 
 

To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electro-magnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

 
MOPD002 Acceleration of Intermediate Charge State Heavy Ions in SIS18 669
 
  • P.J. Spiller, H. Eickhoff, H. Kollmus, P. Puppel, H. Reich-Sprenger
    GSI, Darmstadt
  • L.H.J. Bozyk
    FIAS, Frankfurt am Main
 
 

After partially completing the upgrade program of SIS18, the number of intermediate charge state heavy ions accelerated to the FAIR booster energy of 200 MeV/u, could be increased by a factor of 50. Meanwhile, more than 1010 Uranium ions with charge state 27+ have been accelerated with moderate beam loss by ionization and reasonably stable residual gas pressure conditions. The specific challenge for the SIS18 booster operation is the high cross section for ionization due to the low charge state in combination with gas desorption processes and the dynamic vacuum pressure. Especially for this operation mode which is requied to match the intensity requirements for FAIR, an extended upgrade program of SIS18 is presently ongoing and partially completed. The achieved progress in minimizing the ionization beam loss underlines that the chosen technical strategies described in this report are appropriate.

 
MOPD003 Engineering Status of SIS100 672
 
  • P.J. Spiller, U. Blell, L.H.J. Bozyk, H. Eickhoff, E.S. Fischer, E. Floch, F. Hagenbuck, M. Kauschke, A. Krämer, J.P. Meier, C. Mühle, N. Pyka, S. Ratschow, H. Reich-Sprenger, P. Schnitzer, J. Stadlmann, St. Wilfert
    GSI, Darmstadt
 
 

The engineering design, including the specifications for the accelerator components of the FAIR synchrotron SIS100 has been summarized in the Technical Design Report. The final stage of technical planning shall approach production readiness for the major technical systems in 2010. Significant progress has been achieved in the design of the cryomagnetic system with its main dipole and quadrupole modules, enabling the production of the first pre-series dipole magnet. Slight modifications of the lattice have been implemented to equalize most of the cryostat interconnections, leading to a simplified design and installation effort, and a reduced variety of components and spar parts. The new parallel tunnel allows optimal short interconnections between the supply units and power converters and the accelerator components. The status of the engineering design of SIS100 will be reported.

 
MOPD004 Magnetic Field Correction in Normal Conducting Synchrotrons 675
 
  • E. Feldmeier, Th. Haberer, A. Peters, C. Schömers, R. Steiner
    HIT, Heidelberg
 
 

While ramping the magnets in a synchrotron the magnetic fields deviate from their set values. Especially the field errors in dipole and quadrupole magnets result in different problems during operation. At the Heidelberg Ion Therapy Center HIT a measuring system with extremely high precision has been developed. It can measure in real time integral magnetic fields with a precision of better than 5*10-5 in a reproducible way. A feed-back control system for the magnetic fields is being installed and will be operational in May 2010. This control loop lets the magnets reach the nominal field much faster and thus shortens the dead time in a synchrotron cycle. The cycle can be reduced by 30% and more patients can be treated.

 
MOPD005 Design of PEFP RCS 678
 
  • J.-H. Jang, Y.-S. Cho, H.S. Kim, H.-J. Kwon
    KAERI, Daejon
  • Y.Y. Lee
    BNL, Upton, Long Island, New York
 
 

As a feasible extension plan of the proton engineering frontier project (PEFP) 100-MeV proton linac, the conceptual design of an rapid cycling synchrotron (RCS) is under progress. The main purpose of the synchrotron is a spallation neutron source and it also includes the slow extraction option for basic and applied science research. In the initial stage, the beam power is 60 kW by using a scheme of 100-MeV injection and 1-GeV extraction. There is a scheme to increase power to 500 kW through a 3-stage upgrade. The injection and extraction energies will be 200-MeV and 2-GeV respectively after the final upgrade. This article summarizes the present status of the RCS design. It includes the physics design including injection and acceleration, and conceptual design of some magnets and RF cavity.

 
MOPD007 Design of the Nuclotron Booster in the NICA Project 681
 
  • A.O. Sidorin, N.N. Agapov, A.V. Eliseev, V. Karpinsky, H.G. Khodzhibagiyan, A.D. Kovalenko, G.L. Kuznetsov, I.N. Meshkov, V.A. Mikhaylov, V. Monchinsky, A.V. Smirnov, G.V. Trubnikov, B. Vasilishin
    JINR, Dubna, Moscow Region
  • A.V. Butenko
    JINR/LHE, Moscow
 
 

The main goal of the Nuclotron booster construction are following: accumulation up to 4·10+9 Au32+ ions; acceleration of the ions up to energy of 600 MeV/u that is sufficient for stripping of the ions to the bare nucleus state; simplification of the requirements to the vacuum conditions in the Nuclotron; forming of the required beam emittance at the energy of 100 MeV/u with electron cooling system. The features of this booster, the requirement to the main synchrotron systems and their parameters are presented.

 
MOPD008 Status of the Nuclotron. 'Nuclotron-M' project 684
 
  • A.O. Sidorin, N.N. Agapov, V. Batin, A.V. Butenko, D.E. Donets, A.V. Eliseev, A. Govorov, V. Karpinsky, V.D. Kekelidze, H.G. Khodzhibagiyan, A. Kirichenko, O.S. Kozlov, I.N. Meshkov, V.A. Mikhaylov, V. Monchinsky, S. Romanov, V. Shevtsov, A.N. Sissakian, I. Slepnev, V. Slepnev, G.V. Trubnikov, B. Vasilishin, V. Volkov
    JINR, Dubna, Moscow Region
  • V. Alexandrov
    BINP SB RAS, Protvino, Moscow Region
  • O.I. Brovko, A.D. Kovalenko
    JINR/LHE, Moscow
 
 

The 'Nuclotron-M' project started in 2007 is considered as the key point of the first stage of the NICA/MPD project. General goal of the 'Nuclotron-M' project is to prepare all the systems of the Nuclotron for its long and reliable operation as a part of the NICA collider injection chain. Additionally the project realization will increase the Nuclotron ability for realization of its current experimental program. Results of the last runs of the Nuclotron operation are presented.

 
MOPD013 Upgrade of the Quench Protection Systems for the Superconducting Circuits of the LHC Machine at CERN: From Concept and Design to the First Operational Experience 696
 
  • F. Formenti, Z. Charifoulline, G.-J. Coelingh, K. Dahlerup-Petersen, R. Denz, A. Honma, E. Ravaioli, R. Schmidt, A.P. Siemko, J. Steckert
    CERN, Geneva
  • SF. Feher, R.H. Flora, H. Pfeffer
    Fermilab, Batavia
 
 

Two events, occurring in 2008 during commissioning of the LHC circuits, lead to fundamental changes to the scope of circuit protection. The discovery of aperture-symmetric quenches and the accidental rupture at 9kA of an interconnecting busbar resulted in an emergency program for development and implementation of new protection facilities. The new scheme comprises a distributed busbar supervision system with early warning capabilities based on high-precision splice resistance measurements and system interlocks for rapid de-excitation of the circuit in case of a sudden splice resistance increase. The developed symmetric quench detectors are digital systems with radiation-resistant FPGA logic controllers, having magnet heater firing capabilities. This program successfully allowed a safe re-powering of the collider. The concept of the new electronics boards and the powering modules will be described. More than 14'600 extra cables and 6'000 new detector and control cards were added to the existing QPS system. A first evaluation of the system performance as well as a number of interesting discoveries made during the commissioning will be presented.

 
MOPD014 Single-batch Filling of the CERN PS for LHC-type Beams 699
 
  • S. Hancock, C. Carli, J.F. Comblin, A. Findlay, K. Hanke, B. Mikulec
    CERN, Geneva
 
 

Since the CERN PS Booster cannot simultaneously provide the beam brightness and intensity required, the nominal (25ns bunch spacing) proton beam for the LHC involves double-batch filling of the PS machine. Linac 4, which is under construction, will eventually remove this restriction. In the meantime, the request for 50 and 75ns bunch spacings to mitigate electron cloud effects has lowered the intensity demand such that the Booster can meet this in a single batch without compromising beam brightness. Single-batch transfer means providing two bunches from each of three Booster rings and, in turn, that the bunch spacing is modified by the addition of an h=1 rf component to the h=2 in the Booster in order to fit the h=7 rf buckets waiting in the PS (whilst leaving one bucket empty for kicker purposes). Following the first experiments performed in 2008, the rf manipulations in the Booster have been refined and those in the PS have been modified to cope with single-batch beams. This latest work is presented for both the 50 and 75ns variants.

 
MOPD016 Injection Upgrades for the ISIS Synchrotron 705
 
  • J.W.G. Thomason, D.J. Adams, D.J.S. Findlay, I.S.K. Gardner, S.J.S. Jago, B. Jones, A.P. Letchford, R.J. Mathieson, S.J. Payne, B.G. Pine, A. Seville, H. V. Smith, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon
  • C.R. Prior, G.H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

The ISIS Facility based at the Rutherford Appleton Laboratory in the UK is the world's most productive spallation neutron source. Presently it runs at beam powers of 0.2 MW, with RF upgrades in place to supply increased powers for the new Second Target Station. Increasing injection energy into the synchrotron beyond the existing 70 MeV level has significant potential to increase intensity as a result of reduced space charge. This paper outlines studies for this upgrade option, which include magnet and power supply upgrades to achieve a practical injection system, management of increased injection region activation levels due to higher energy un-stripped particles and ensuring the modified longitudinal and transverse beam dynamics during injection and acceleration are possible with low loss at higher intensity levels.

 
MOPD017 Impedance Considerations for the Design of the Vacuum System of the CERN PS2 Proton Synchrotron 708
 
  • K.L.F. Bane, G.V. Stupakov, U. Wienands
    SLAC, Menlo Park, California
  • M. Benedikt, A. Grudiev, E. Mahner
    CERN, Geneva
 
 

In order for the LHC to reach an ultimate luminosity goal of 1035, CERN is considering upgrade options for the LHC injector chain, including a new 50 GeV synchrotron of about 1.3 km length for protons and heavy ions, to be called the PS2. In this ring the proton energy is ramped from 4 GeV in 1.2 s, and the design (proton) current is 2.7 A. The present baseline of the vacuum system considers elliptical stainless steel chambers bakeable up to 300°C, various coatings to mitigate electron cloud are under study. For a bare stainless steel or Inconel chamber, the resistive wall wake alone will lead to multi-bunch instability, whereas for transverse mode coupling (TMCI), the threshold is above the design beam current, though this instability may become an issue once other impedance contributions are taken into account. A copper layer of varying thickness is shown to raise the TMCI threshold but to have relatively little effect on the multi-bunch resistive-wall growth rate unless the coating is very thick. We are also studying the effect of the copper coating on the penetration of the guide field during the energy ramp, which sets an upper limit on the allowable thickness.

 
MOPE085 Rapid-cycling Synchrotron with Variable Momentum Compaction 1182
 
  • Y. Alexahin
    Fermilab, Batavia
  • D.J. Summers
    UMiss, University, Mississippi
 
 

There are conflicting requirements on the value of the momentum compaction factor during energy ramp in a synchrotron: at low energies it should be positive and sufficiently large to make the slippage factor small so that it is possible to work closer to the RF voltage crest and ensure sufficient RF bucket area, whereas at higher energies it should be small or negative to avoid transition crossing. In the present report we propose a lattice with variable momentum compaction factor and consider the possibility of using it in a high repetition rate proton driver for muon collider and neutrino factory.

 
TUYRA02 Challenges and Solutions for J-PARC Commissioning and Early Operation 1304
 
  • T. Koseki
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

The J-PARC accelerator facility consists of a 400 MeV H- linac, a 3-GeV RCS, a 50-GeV MR (Main Ring) and related experimental facilities. Beam commissioning of the facility is started from the upstream accelerators while construction of the downstream accelerators and experimental facilities is in progress. The beam commissioning of MR, MLF(Materials and Life science experimental Facility) and Hadron experimental facility started in JFY 2008. In this presentation, we present an overview of the J-PARC commissioning status. Recent progress of MR commissioning will be described in more detail. The talk will focus on the issues, challenges, solutions, and lessons learned during the commissioning and early operations of J-PARC.

 

slides icon

Slides

 
THYMH01 Lanzhou Cooler Storage Ring Commissioning 3611
 
  • J.W. Xia, Y. Liu, L.J. Mao, R.S. Mao, J.C. Yang, Y.J. Yuan
    IMP, Lanzhou
 
 

CSR has recently made significant progress in commissioning a variety of light to heavy ion in the cooler ring. Also, carbon therapy was successfully carried out. A significant achievement is the energy modulation extraction using slow extraction realizing 3D conformal treatment.

 

slides icon

Slides