03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques

A03 Linear Colliders

Paper Title Page
WEOBMH01 Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size 2383
 
  • G.R. White, A. Seryi, M. Woodley
    SLAC, Menlo Park, California
  • S. Bai
    IHEP Beijing, Beijing
  • P. Bambade, Y. Renier
    LAL, Orsay
  • B. Bolzon
    IN2P3-LAPP, Annecy-le-Vieux
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Komamiya, M. Oroku, Y. Yamaguchi, T. Yamanaka
    University of Tokyo, Tokyo
  • K. Kubo, S. Kuroda, T. Okugi, T. Tauchi
    KEK, Ibaraki
  • E. Marin
    CERN, Geneva
 
 

The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing low-emittance electron beams (<12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere* . The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the overall tuning algorithm and describe operational experiences and performances


* Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System. Glen R. White , S. Molloy, M. Woodley, (SLAC). EPAC08-MOPP039, SLAC-PUB-13303.

 

slides icon

Slides

 
WEOBMH03 The Baseline Positron Production and Capture Scheme for CLIC 2389
 
  • O. Dadoun, I. Chaikovska, P. Lepercq, F. Poirier, A. Variola
    LAL, Orsay
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • L. Rinolfi, A. Vivoli
    CERN, Geneva
  • V.M. Strakhovenko
    BINP SB RAS, Novosibirsk
  • C. Xu
    IHEP Beijing, Beijing
 
 

The CLIC study considers the hybrid source using channeling as the baseline for unpolarised positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten target. With the tungsten crystal oriented on its < 111 > axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e- pair creation. The downstream capture section is based on an adiabatic matching device and a 2 GHz pre-injector linac. The resulting studies are presented here.

 

slides icon

Slides

 
WEPEB075 Beam Halo Studies for CTF3 2872
 
  • S.T. Artikova
    MPI-K, Heidelberg
  • R.B. Fiorito, A.G. Shkvarunets, H.D. Zhang
    UMD, College Park, Maryland
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire
 
 

Beam halo can have severe effects on the performance of high energy accelerators. It reduces the experimental throughput, may lead to noise in the experiments, or even damaging of accelerator components. In order to understand and ideally control the formation and evolution of beam halo, detailed simulation studies are required. In this contribution halo generation mechanisms and the underlying physical principles are first presented, before the particular case of the CLIC Test Facility (CTF3) is discussed in detail. Analytical, numerical and simulation studies are combined to estimate the relevant sources of halo formation and to study halo propagation in the different CTF3 sections.

 
WEPEC054 Status of the CLIC RTML Studies 3013
 
  • F. Stulle, D. Schulte, J. Snuverink
    CERN, Geneva
  • A. Latina
    Fermilab, Batavia
  • S. Molloy
    Royal Holloway, University of London, Surrey
 
 

Over the last months the general layout of the CLIC main beam RTML has stabilized and most important lattices are existing. This allowed us to perform detailed studies of tolerances on magnetic stray fields and on magnet misalignment. Additionally, beam lines could be improved in terms of performance and flexibility. We discuss the overall layout as will be described in the CLIC conceptual design report, highlight the improvements which have been made and show results of tolerance studies.

 
WEPE001 Optics Studies for the Interaction Region of the International Linear Collider 3338
 
  • R. Versteegen, O. Delferrière, O. Napoly, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
 
 

The International Linear Collider reference design is based on a collision scheme with a 14 mrad crossing angle. Consequently, the detector solenoid and the machine axis do not coincide. It provokes a position offset of the beam at the Interaction Point in addition to a beam size growth. These effects are modified by the insertion of the anti-DID (Detector Integrated Dipole) aiming at reducing background in the detector. Furthermore a crab cavity is necessary to restore a 'head on' like collision, leading to higher luminosity. This introduces new beam distortions. In this paper, optics studies and simulations of beam transport in the Interaction Region taking these elements into account are presented. Correction schemes of the beam offset and beam size growth are exposed and their associated tolerances are evaluated.

 
WEPE003 Design of an 18 MW Beam Dump for 500 GeV Electron/Positron Beams at an ILC 3341
 
  • J.W. Amann, R. Arnold, A. Seryi, D.R. Walz
    SLAC, Menlo Park, California
  • K. Kulkarni, P. Rai, P. Satyamurthy, V. Tiwari
    BARC, Mumbai
  • H. Vincke
    CERN, Geneva
 
 

Significant progress has been made in the design of an 18MW Beam Dump for 500 GeV electron/positron beams at an ILC. The beam dump design is based on circulating water with a vortex-like flow pattern to dissipate and remove the energy deposited by the beam. Multi-dimensional technology issues have been addressed to design the beam dump system. Detailed thermal-hydraulic analysis was carried out in all the critical regions of the beam dump which include, 1) location of highest volumetric power deposition by the beam, 2) location of highest linear power deposition, 3) entrance window region, 4) vessel walls etc. Based on this analysis, the sizing of the beam dump and its components, water flow rate and inlet jet velocity, optimum location of the beam path in the beam dump, beam sweep radius etc have been estimated. In addition, preliminary mechanical design of the beam dump, cooling circuit details, sizing of the hydrogen/oxygen recombiner system, ion exchange and 7Be removal, prompt and residual radioactivity studies etc have been carried out. Details of this work will be presented.

 
WEPE004 High Gradient Behaviors of Large Grain ICHIRO Single Cell Cavity by Chemical Polishing 3344
 
  • F. Furuta, T. Konomi, K. Saito
    KEK, Ibaraki
 
 

We have started high gradient R&D with the combination of ICHIRO shape, sliced large grain niobium, and chemical polishing (CP). We fabricated one large grain ICHIRO single cell cavity that had end cell shape of ICHIRO 9-cell but no end group. We processed this cavity surface by centrifugal barrel polishing (CBP) and CP. This cavity successfully achieved the high gradient of 42MV/m at the first vertical test. We made series test by repeating CP on this cavity. The results of series test will be reported.

 
WEPE005 High Field Q-slope Problem in End Group Cavities 3347
 
  • F. Furuta, T. Konomi, K. Saito
    KEK, Ibaraki
 
 

In our high gradient R&D of ICHIRO cavities at KEK, we have found some problems related to HOM coupler and high power RF input coupler port on beam tube: end group. One is the difficulties of rinsing in complex structures like HOM coupler. The other is Q-slope at high filed more than 40MV/m. The cavities without end group did not show such a high field Q-slope. At first step, we tested much stronger and aggressive rinsing method; wiping, brushing, and mega-sonic rinsing, against end group. The details and results of these rinsing effects will be reported.

 
WEPE006 Vacuum Evacuation Effect on ICHIRO 9-cell Cavities during Vertical Test 3350
 
  • F. Furuta, T. Konomi, K. Saito
    KEK, Ibaraki
 
 

We have continued high gradient R&D of ICHIRO 9-cell cavities at KEK. The maximum gradient of ICHIRO 9-cell cavity #5 that has no end groups on beam tube was still limited around 36MV/m so far. The 9-cell performances were sometimes limited by triggered field emission (FE) by multipactings. We suspected the residual gas in the cavity might be one of the sources of triggered FE. The cavity was closed during vertical test in our system. Other labs evacuated cavity during vertical test. In order to improve the vacuum of cavity during vertical test, we made evacuation system in our cavity test stand. The comparison of results for vertical test with and without evacuation will be reported.

 
WEPE007 Simulation Study of Scale Error Effect of BPM in ILC Main Linac Corrections 3353
 
  • K. Kubo
    KEK, Ibaraki
  • D. Wang
    IHEP Beijing, Beijing
 
 

For preserving low emittance beam in the ILC (International Linear Collider) main linacs, Dispersion Matching Steering (DMS) is planed to be used as a main correction method. The linacs are following the earth's curvature and the designed vertical dispersion in the linacs should not be zero. For this reason, the orbit difference due to beam energy difference will have to be measured accurately and tolerance of scale error of beam position monitors (BPM) can be tight. Here, the tolerance of the scale error are estimated by tracking simulations. Choice of optics design for relaxing the tolerance is also discussed.

 
WEPE008 Construction of the S1-Global Cryomodules for ILC 3356
 
  • N. Ohuchi, H. Hayano, N. Higashi, E. Kako, Y. Kondou, H. Nakai, S. Noguchi, T. Saeki, M. Satoh, M. Sawabe, T. Shidara, T. Shishido, A. Terashima, K. Tsuchiya, K. Watanabe, A. Yamamoto, Y. Yamamoto, K. Yokoya
    KEK, Ibaraki
  • T.T. Arkan, S. Barbanotti, H. Carter, M.S. Champion, R.D. Kephart, J.S. Kerby, D.V. Mitchell, Y. Orlov, T.J. Peterson, M.C. Ross
    Fermilab, Batavia
  • A. Bosotti, C. Pagani, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI)
  • D. Kostin, L. Lilje, A. Matheisen, W.-D. Möller, H. Weise
    DESY, Hamburg
 
 

In an attempt at demonstrating an average field gradient of 31.5 MV/m as per the design accelerating gradient for ILC, a program called S1-Global is in progress as an international research collaboration among KEK, INFN, FNAL, DESY and SLAC. The S1-Global cryomodule will contain eight superconducting cavities from FNAL, DESY and KEK. The cryomodule will be constructed by joining two half-size cryomodules, each 6 m in length. The module containing four cavities from FNAL and DESY has been constructed by INFN. The module for four KEK cavities is being modified at present. The assembly of the cryomodules is scheduled from January 2010, and the operation of the system is scheduled from June 2010 at the KEK-STF. In this paper, the construction of the S1-Global cryomodule will be presented.

 
WEPE009 Application of MO Sealing for SRF Cavities 3359
 
  • K. Saito, F. Furuta, T. Konomi
    KEK, Ibaraki
 
 

Dr. Matsumoto in KEK and his colleague have developed the MO flange for vacuum sealing of normal conducting high peak power RF wave-guide. This is impedance free sealing. We have applied this sealing to SRF cavity technology instead of indium sealing. We used pure aluminum gasket for the sealing material. We had a difficulty on the titanium flange but succeeded to establish leak tightness in super-fluid Helium by stainless flange. In this paper, we will report the R&D results.

 
WEPE010 Improvements of Cleaning Methods for High Q-slope Problem in Full End Single Cell Cavity  3362
 
  • K. Saito, F. Furuta, T. Konomi
    KEK, Ibaraki
 
 

We are developing LL high gradient SRF cavity for ILC. Recently we have observed a Q-slope problem at higher gradient over 35-40MV/m on the full end single cell cavities, which have a HOM coupler and an input coupler on a beam tube. This problem might be due to poor rinsing in such a complicate structure. We have studied to strengthen cleaning by improvement of the nozzle shape used high pressure water rinsing, inside ultrasonic cleaning, steam cleaning, and so on. In this paper we will report these results.

 
WEPE011 Large Grain 9-cell Cavities R&D at KEK 3365
 
  • K. Saito, F. Furuta, T. Konomi
    KEK, Ibaraki
 
 

We are developing large grain/single crystal niobium material for ILC collaborating with Tokyo Denkai. These materials are very much promising to obtain high SRF cavity performance with cost-effective production. We have fabricated two 9-cell cavities from these large grain niobium materials and made cold test to evaluate the SRF performance. In this paper, we will report cavity fabrications and preparations and cold test results.

 
WEPE012 Summary of Vertical Tests for S1-Global Project in KEK-STF 3368
 
  • Y. Yamamoto, H. Hayano, E. Kako, S. Noguchi, M. Sato, T. Shishido, K. Umemori, K. Watanabe
    KEK, Ibaraki
 
 

Vertical tests of five 1.3GHz 9-cell cavities (MHI#5-#9) have been done totally 17 times from 2008 to 2009 for S1-Global project in KEK-STF, which is planned in 2010. MHI#7 cavity achieved 33.6MV/m, which was the best result, and the others below 30MV/m. After the exchange for new EP acid on May/2009, many brown stains (niobium oxide) were observed on the interior surface of the cavity, and onset gradient of radiation level measured at the top flange of cryostat was much lower. After several vertical tests, the effect by this phenomenon was gradually relaxed. After four cavities reached above 25MV/m, the gradient suddenly dropped due to the unknown cause at the next vertical test. Two of four cavities were recovered above 25MV/m at the final vertical test again. However, any cavity in KEK-STF did not reach ILC specification (Eacc=35MV/m, Q0=0.8x1010) yet. This means that more improvement for cavity fabrication and surface treatment is necessary. In this presentation, the summary of the vertical tests for S1-Global project in KEK-STF will be reported.

 
WEPE013 Summary of Results and Development of Online Monitor for T-mapping/X-ray-mapping in KEK-STF 3371
 
  • Y. Yamamoto, H. Hayano, E. Kako, S. Noguchi, M. Sato, T. Shishido, K. Umemori, K. Watanabe
    KEK, Ibaraki
 
 

Vertical test for 1.3GHz 9-cell cavity has been routinely carried out over one year since 2008 in KEK-STF. Temperature mapping (T-mapping) system using 352 carbon resistors was introduced to identify the heating location at thermal quenching of the cavity. T-mapping system in STF identified perfectly the heating location in every vertical test for S1-Global project. As X-ray-mapping system, 142 PIN diodes were used, and the x-ray emission site was detected under heavy field emission. During the vertical test, it is convenient to display the result of T-mapping and X-ray-mapping by online monitor system. For this purpose, the new online monitor system was developed by using EPICS (Experimental Physics and Industrial Control System) and Java script, and introduced in recent several vertical tests. As a data acquisition system, nine data loggers (MW100, YOKOGAWA) are used, and signals from totally 540 channels are stored every 0.1 sec. The online display for T-mapping and X-ray-mapping is updated automatically every 5 seconds. In this report, the summary of T-mapping/X-ray-mapping result and the online monitor system will be described in detail.

 
WEPE014 Design and Model Cavity Test of the Demountable Damped Cavity 3374
 
  • T. Konomi
    Sokendai, Ibaraki
  • F. Furuta, K. Saito
    KEK, Ibaraki
 
 

We have designed Demountable Damped Cavity (DDC) for ILC main linac. DDC has two design concepts. One is the coaxial waveguide for HOM damping, which can strongly couple HOM's. Accelerating mode is reflected by a choke filter. The axial symmetry can reduce the beam kick effect. The other concept is demountable structure which can make easy cleaning of end group in order to suppress the Q-slope problem at a high field. In this paper we will report the RF design and measurement results in model cavity.

 
WEPE015 Status of the Superconducting Cavity Development for ILC at MHI 3377
 
  • K. Sennyu, H. Hara, H. Hitomi, K. Kanaoka, M. Matsuoka, T. Yanagisawa
    MHI, Kobe
 
 

MHI has supplied superconducting cavity for the ILC R&D project to KEK in Japan for the last few years. We are improving the technology to design and fabricate the superconducting cavities. We can present some example of our work that have improved the productivity of the superconducting cavities.

 
WEPE017 Beam Test Plan of Permanent Magnet Quadrupole Lens at ATF2 3380
 
  • Y. Iwashita, H. Fujisawa, M. Ichikawa, H. Tongu, S. Ushijima
    Kyoto ICR, Uji, Kyoto
  • M. Masuzawa, T. Tauchi
    KEK, Ibaraki
 
 

A prototype of a permanent magnet quadrupole lens for ILC final focus doublet is fabricated. In order to demonstrate the feasibility, it will be tested in a real beam line. Such practical experiences include its shipping, storage, handling, installation, alignment technique, and so on. Because permanent magnets cannot be switched off in contradistinction to electromagnets, they should be evacuated from beam lines when no interference is desired and the process should be quick with enough reproducibility. The magnetic center and strength stability including reproducibility are also important issues during the beam test. In order to reduce interferences with current ongoing testing items at ATF2, the magnet will be installed at a further upstream position of the ATF2 beam line. The installation and test plan will be described.

 
WEPE018 ILC Siting in Russia, Dubna Region and ILC Related Activity at JINR 3383
 
  • G. Shirkov, Ju. Boudagov, Yu.N. Denisov, A. Dudarev, I.N. Meshkov, B.M. Sabirov, A.N. Sissakian, G.V. Trubnikov
    JINR, Dubna, Moscow Region
 
 

The investigations on ILC siting in the Dubna region and ILC technical activity at JINR are presented. International intergovernmental status of JINR, stable geological and plain relief conditions, comfortable location and well developed infrastructure create a set of advantages of the JINR site in the neighborhood of Dubna. The shallow layout of accelerator tunnel makes it possible to use a communication gallery at the surface instead of second one. This is an effective way of significant cost reduction of all conventional facilities and explicit labor of the project. The results of the preliminary geological engineering surveys along the supposed route of the ILC in Dubna area of Moscow region are presented.

 
WEPE019 The CLIC Post-Collision Line 3386
 
  • E. Gschwendtner, A. Apyan, K. Elsener, A. Sailer, J.A. Uythoven
    CERN, Geneva
  • R. Appleby, M.D. Salt
    UMAN, Manchester
  • A. Ferrari, V.G. Ziemann
    Uppsala University, Uppsala
 
 

The 1.5TeV CLIC beams, with a total power of 14MW per beam, are disrupted at the interaction point due to the very strong beam-beam effect. As a result, some 3.5MW reach the main dump in form of beamstrahlung photons. About 0.5MW of e+e- pairs with a very broad energy spectrum need to be disposed along the post-collision line. The conceptual design of this beam line will be presented. Emphasis will be on the optimization studies of the CLIC post-collision line design with respect to the energy deposition in windows, dumps and scrapers, on the design of the luminosity monitoring for a fast feedback to the beam steering and on the background conditions for the luminosity monitoring equipment.

 
WEPE020 Background at the Interaction Point from the CLIC Post-Collision Line 3389
 
  • E. Gschwendtner, K. Elsener
    CERN, Geneva
  • R. Appleby, M.D. Salt
    UMAN, Manchester
  • A. Apyan
    Fermilab, Batavia
  • A. Ferrari
    Uppsala University, Uppsala
 
 

The 1.5TeV CLIC beams, with a total power of 14MW per beam, are disrupted at the interaction point due to the very strong beam- beam effect. The resulting spent beam products are transported to suitable dumps by the post-IP beam line, which generates beam losses and causes the production of secondary cascades towards the interaction region. In this paper the electromagnetic background at the IP are presented, which were calculated using biased Monte Carlo techniques. Also, a first estimate is made of neutron back-shine from the main beam dump.

 
WEPE021 Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider 3392
 
  • P. Lebrun
    CERN, Geneva
  • P.H. Garbincius
    Fermilab, Batavia
 
 

High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-off markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

 
WEPE022 CLIC Energy Scans 3395
 
  • D. Schulte, R. Corsini, B. Dalena, J.-P. Delahaye, S. Döbert, G. Geschonke, A. Grudiev, J.B. Jeanneret, E. Jensen, P. Lebrun, Y. Papaphilippou, L. Rinolfi, G. Rumolo, H. Schmickler, F. Stulle, I. Syratchev, R. Tomás, W. Wuensch
    CERN, Geneva
  • E. Adli
    University of Oslo, Oslo
 
 

The physics experiments at CLIC will require that the machine scans lower than nominal centre-of-mass energy. We present different options to achieve this and discuss the implications for luminosity and the machine design.

 
WEPE023 Impact of Dynamic Magnetic Fields on the CLIC Main Beam 3398
 
  • J. Snuverink, W. Herr, C. Jach, J.B. Jeanneret, D. Schulte, F. Stulle
    CERN, Geneva
 
 

The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the position of the beam. The beam position will be sensitive to external dynamic magnetic fields (stray fields) in the nanotesla regime. The impact of these fields on the CLIC main beam has been studied by performing simulations on the lattices and tolerances have been determined. Several mitigation techniques will be discussed.

 
WEPE024 Vacuum Specifications for the CLIC Main Linac 3401
 
  • G. Rumolo, J.B. Jeanneret, D. Schulte
    CERN, Geneva
 
 

The maximum tolerable pressure value in the chamber of the CLIC electron Main Linac is determined by the threshold above which the fast ion instability sets in over a bunch train. Instability calculations must take into account that, since the accelerated beam becomes transversely very small, its macroscopic electric field can reach values above the field ionization threshold. In this paper we first discuss threshold values of the electric field for field ionization and the extent of the transverse region that gets fully ionized along the ML. Then, we show the results of the instability simulations from the FASTION code using the new model, and consequently review the pressure requirement in the ML.

 
WEPE025 Beam-beam Background in CLIC in Presence of Imperfections 3404
 
  • B. Dalena, D. Schulte
    CERN, Geneva
 
 

Beam-Beam background is one of the main issues of the CLIC MDI at 3 TeV CM. The background level have a significant impact on the interaction region design. This paper presents a study of the background expected rates versus luminosity according to different beam parameters and considering different machine conditions, using an integrated simulation of the Main LINAC and BDS sub-systems.

 
WEPE026 A New High-power RF Device to Vary the Output Power of CLIC Power Extraction and Transfer Structures (PETS) 3407
 
  • I. Syratchev, A. Cappelletti
    CERN, Geneva
 
 

One crucial development for CLIC is an adjustable high-power rf device which controls the output power level of individual Power Extraction and Transfer Structures (PETS) even while fed with a constant drive beam current. The CLIC two-beam rf system is designed to have a low, approximately 10-7, breakdown rate during normal operation and breakdowns will occur in both accelerating structures and the PETS themselves. In order to recover from the breakdowns and reestablish stable operation, it is necessary to have the capability to switch off a single PETS/accelerating structure unit and then gradually ramp generated power up again. The baseline strategy and implementation of such a variable high-power mechanism is described.

 
WEPE027 Progress towards the CLIC Feasibility Demonstration in CTF3 3410
 
  • P.K. Skowronski, S. Bettoni, R. Corsini, A.E. Dabrowski, S. Döbert, A. Dubrovskiy, F. Tecker
    CERN, Geneva
  • C. Biscari
    INFN/LNF, Frascati (Roma)
  • W. Farabolini
    CEA, Gif-sur-Yvette
  • R.J.M.Y. Ruber
    Uppsala University, Uppsala
 
 

The objective of the CLIC Test Facility CTF3 is to demonstrate the key feasibility issues of the CLIC two-beam technology: the efficient generation of a very high current drive beam and its stable deceleration in 12 GHz resonant structures, to produce high-power RF pulses and accelerate the main beam with an accelerating gradient of 100 MV/m. The construction and commissioning of CTF3 has taken place in stages from 2003. Many milestones had already been reached, including the first demonstration at the end of 2009 of a factor 2 x 4 re-combination of the initial drive beam pulse, thus reaching a beam current of 25 A. In this paper we summarise the commissioning highlights and the issues already validated at the earlier stages. We then show and discuss the latest results obtained, in view of the completion of the CLIC feasibility demonstration due for the end of 2010.

 
WEPE028 CLIC BDS Tuning, Alignment and Feedbacks Integrated Simulations 3413
 
  • R. Tomás, B. Dalena, J. Pfingstner, D. Schulte, J. Snuverink
    CERN, Geneva
  • J.K. Jones
    Cockcroft Institute, Warrington, Cheshire
  • A. Latina
    Fermilab, Batavia
  • J. Resta-López
    JAI, Oxford
 
 

The CLIC BDS tuning, alignment and feedbacks studies have been typically performed independently and only over particular sections of the BDS. An effort is being put to integrate all these procedures to realistically evaluate the luminosity performance.

 
WEPE029 Impact of the Experiment Solenoid on the CLIC Luminosity 3416
 
  • B. Dalena, D. Schulte, R. Tomás
    CERN, Geneva
 
 

The main detector solenoid and associated magnets can have an important impact on the CLIC luminosity. These effects are discussed for different solenoid designs. In particular, the luminosity loss due to incoherent synchrotron radiation in the experiment solenoid and QD0 overlap is evaluated. The impact of the AntiDiD (Anti Detector integrated Dipole) on luminosity and compensated techniques on beam optic distortion are also discussed.

 
WEPE030 The CLIC BDS Towards the Conceptual Design Report 3419
 
  • R. Tomás, B. Dalena, E. Marin, D. Schulte, G. Zamudio
    CERN, Geneva
  • D. Angal-Kalinin, J.-L. Fernandez-Hernando, F. Jackson
    Cockcroft Institute, Warrington, Cheshire
  • J. Resta-López
    JAI, Oxford
  • A. Seryi
    SLAC, Menlo Park, California
 
 

The CLIC Conceptual Design Report must be ready by 2010. This paper aims at addressing all the critical points of the CLIC BDS to be later implemented in the CDR. This includes risk evaluation and possible solutions to a number of selected points. The smooth and practical transition between the 500 GeV CLIC and the design energy of 3 TeV is also studied.

 
WEPE031 Beam Delivery System Dogleg Design and Integration for the International Linear Collider 3422
 
  • J.K. Jones, D. Angal-Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

It is proposed to investigate the option of moving the positron source to the end of the main linac as a part of the central integration in the International Linear Collider project. The positron source incorporates an undulator at the end of the main linac and the photons generated in the undulator are transported to the target, located at a distance of around 400m. The dogleg design has been optimised to provide the required transverse off-set at the location of the target and to give minimum emittance growth at 500 GeV. The design of the dogleg and the tolerances on beam tuning as a result of locating this dogleg in the beginning of the beam delivery system are presented.

 
WEPE032 Recent Progress on a Manifold Damped and Detuned Structure for CLIC 3425
 
  • V.F. Khan, A. D'Elia, R.M. Jones
    UMAN, Manchester
  • A. Grudiev, W. Wuensch, R. Zennaro
    CERN, Geneva
 
 

Our earlier design* for an accelerating structure to suppress the wakefields in the CLIC main accelerating cavities has been modified. This structure combines strong detuning of the cell frequencies with waveguide-like damping by providing the structure with four attached manifolds which loosely couple a portion of the wakefields from each cell. The amended geometry reduces the surface pulse temperature heating by approximately 20%. We report on the overall parameters of the fundamental mode, together with details on damping higher order dipole modes. In order to adequately suppress the wakefield we interleave the frequencies of eight successive structures.


* Khan and Jones, TU5PFP007, PAC'09, Vancouver, Canada 2009.

 
WEPE033 Considerations for a Dielectric-based Two-beam-accelerator Linear Collider 3428
 
  • W. Gai, M.E. Conde, J.G. Power
    ANL, Argonne
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
 
 

In this paper, we present a linear collider concept based on drive beam generation from an RF photoinjector, and employing dielectric structures for power extraction and acceleration. The collider is based on a modular design with each module providing 100 GeV net acceleration. A high current drive beam is produced using a low frequency RF gun (~ 1GHz), and subsequently accelerated to ~1 GeV using conventional standing wave cavities. High frequency (20 GHz) RF power, extracted from the drive beam using a low impedance dielectric structure, is used to power the main linacs, which are based on high impedance high gradient dielectric loaded accelerating structures. We envision this scheme will produce high gradients (300 MeV/m), leading to a very compact design. The modularity of the design will allow a staged construction that will enable extension to multi-TeV energies.

 
WEPE034 Final Results on RF and Wake Kicks Caused by the Couplers for the ILC Cavity 3431
 
  • A. Lunin, I.G. Gonin, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia
 
 

In the paper the results are presented for calculation of the transverse wake and RF kick from the power and HOM couplers of the ILC acceleration structure. The RF kick was calculated stand-alone by HFSS, CST MWS and COMSOL codes while the wake kick was calculated by GdfidL. The calculation precision and convergence for both cases are discussed and compared to the results obtained independently by other group.

 
WEPE035 Development of High Average Power Lasers for the Photon Collider 3434
 
  • J. Gronberg, B. Stuart
    LLNL, Livermore, California
  • A. Seryi
    SLAC, Menlo Park, California
 
 

The realization of a photon collider option at a future TeV scale electron linear collider requires the generation of high average power picosecond laser pulses. Recirculating cavities have been proposed to reduce the amount of laser power that needs to be generated, however, these cavities impose stringent limits on the wavefront quality and stability of the laser architecture. We report on a design study of a high average power laser amplifier architecture which can produce the required laser time structure and stability to drive these recirculating cavities.

 
WEPE041 A Superconducting Magnet Upgrade of the ATF2 Final Focus 3440
 
  • B. Parker, M. Anerella, J. Escallier, P. He, A.K. Jain, A. Marone, P. Wanderer, K.-C. Wu
    BNL, Upton, Long Island, New York
  • P. Bambade
    LAL, Orsay
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P.A. Coe, D. Urner
    OXFORDphysics, Oxford, Oxon
  • C. Hauviller, E. Marin, R. Tomás, F. Zimmermann
    CERN, Geneva
  • N. Kimura, K. Kubo, T. Kume, S. Kuroda, T. Okugi, T. Tauchi, N. Terunuma, T. Tomaru, K. Tsuchiya, J. Urakawa, A. Yamamoto
    KEK, Ibaraki
  • A. Seryi, C.M. Spencer, G.R. White
    SLAC, Menlo Park, California
 
 

The KEK ATF2 facility, with a well instrumented beam line and Final Focus (FF), is a proving ground for linear collider (LC) technology to demonstrate the extreme beam demagnification and spot stability needed for a LC FF*. ATF2 uses water cooled magnets but the baseline ILC calls for a superconducting FF**. Thus we plan to replace some ATF2 FF magnets with superconducting ones made via direct wind construction as planned for the ILC. With no cryogenic supply at ATF2, we look to cool magnets and current leads with a few cryocoolers. ATF2 FF coil winding is underway at BNL and production warm magnetic measurements indicate good field quality. Having FF magnets with larger aperture and better field quality than present FF might allow reducing the beta function at the FF for study of focusing regimes relevant to CLIC. Our ATF2 magnet cryostat will have laser view ports for cold mass movement measurement and FF support and stabilization requirements under study. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC R&D prototype at BNL. We want to be able to predict LC FF performance with confidence.


* ATF2 proposal, volumes 1 and 2 at http://lcdev.kek.jp/ILC-AsiaWG/WG4notes/atf2/proposal/index.html
** International Linear Collider Reference Design Report, ILC-REPORT-2007-001, August 2007.

 
FRXCMH01 Towards CLIC Feasibility 4769
 
  • J.-P. Delahaye
    CERN, Geneva
 
 

The CLIC study is a site independent study exploring technological developments to extend linear colliders into the Multi-TeV colliding beam energy range at reasonable cost and power consumption. A conceptual design report (CDR) of an electron-positron Compact LInear Collider (CLIC) with a 3 TeV center-of-mass collision energy is presently being prepared including results of 25 years of R&D to address the feasibility of its novel and promising technology, especially in an ambitious Test Facility, CTF3. The R&D is performed by a multi-lateral CLIC/CTF3 collaboration strong of 37 volunteer institutes from 19 countries from which the outstanding work and results are reported.

 

slides icon

Slides