A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Vormann, H.

Paper Title Page
MOPEA003 Linac Commissioning at the Italian Hadrontherapy Centre CNAO 67
 
  • B. Schlitt, G. Clemente, C.M. Kleffner, M.T. Maier, A. Reiter, W. Vinzenz, H. Vormann
    GSI, Darmstadt
  • C. Biscari
    INFN/LNF, Frascati (Roma)
  • E. Bressi, M. Pullia, E. Vacchieri, S. Vitulli
    CNAO Foundation, Milan
  • A. Pisent, P.A. Posocco, C. Roncolato
    INFN/LNL, Legnaro (PD)
 
 

The Centro Nazionale di Adroterapia Oncologica (CNAO) presently under commissioning in Pavia, Italy, will be the first Italian facility for the treatment of deeply seated tumours with proton and carbon ion beams. The CNAO accelerator comprises a 7 MeV/u injector linac and a 400 MeV/u synchrotron. The 216.8 MHz linac is a copy of the linac at the Heidelberg Ion-Beam Therapy Centre (HIT) and consists of a 400 keV/u 4-rod type RFQ and of a 20 MV IH type drift tube linac. In 2004, a collaboration between CNAO and GSI was established for construction and commissioning of the linac. GSI supervised the manufacturing of the linac and of its technical systems, performed copper-plating, assembly, and tuning (together with IAP Frankfurt), and delivered complete beam diagnostics systems. The RFQ was tested at GSI with proton beams together with the BD systems prior to delivery to CNAO. Installation and commissioning in Pavia were performed in collaboration by CNAO, GSI, and INFN. RFQ and thereafter IH linac were successfully commissioned in two steps in 2009, both with (H3)+ and carbon ion beams. The results of the linac commissioning will be reported as well as a comparison to the HIT linac.

 
MOPD028 Commissioning of a New CW Radio Frequency Quadrupole at GSI 741
 
  • P. Gerhard, W.A. Barth, L.A. Dahl, A. Orzhekhovskaya, K. Tinschert, W. Vinzenz, H. Vormann, S.G. Yaramyshev
    GSI, Darmstadt
  • A. Schempp, M. Vossberg
    IAP, Frankfurt am Main
 
 

The super heavy element research is one of the outstanding projects at GSI. At SHIP* six new elements have been discovered; moreover, nuclear chemical experiments with transactinides were recently performed at TASCA**. This experimental program strongly benefits from high average beam intensities. In the past beam currents were raised significantly by a number of improvements. The present upgrade program comprises the installation of a superconducting (sc) 28 GHz ECR ion source, a new frontend (low energy beam transport and RFQ), and, in the long term, an sc cw Linac. For the short term, the new RFQ will raise the duty factor by a factor of two (50%), limited by the following accelerator only. This bottleneck will be resolved by the applied cw Linac. Beam tests with a newly developed sc CH cavity are scheduled for 2012. The setup of the RFQ as the major upgrade of the 20 year old HLI*** is in progress, the commissioning will be finished in March 2010. Besides a higher duty factor, improved longitudinal beam quality and transmission are expected. This paper reports on the challenging rf and beam commissioning.


* Separator for Heavy Ion Reaction Products
** TransActinide Separator and Chemistry Apparatus
*** High charge state injector, a part the UNILAC