A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

van Rienen, U.

Paper Title Page
TUPEC049 Efficient 3D Space Charge Calculations with Adaptive Discretization based on Multigrid 1832
 
  • G. Pöplau, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock
 
 

Precise and fast 3D space-charge calculations for bunches of charged particles are still of growing importance in recent accelerator designs. Whereas an adaptive discretization of a bunch is often required for efficient space charge calculations in practice, such a technique is not implemented in many computer codes. For instance, the FFT Poisson solver that is often applied allows only an equidistant mesh. An adaptive discretization following the particle density distribution is implemented in the GPT tracking code (General Particle Tracer, Pulsar Physics) together with a multigrid Poisson solver. The disadvantage of this approach is that jumps in the distribution of particles are not taken into account and the hierarchical construction of meshes in multigrid can not be used. In this paper we present an approach to an adaptive discretization which is based on the multigrid technique. The goal is that the error estimator needed for the adaptive distribution of mesh lines can be calculated directly from the multigrid procedure. The algorithm will be investigated for several particle distributions and compared to that adaptive discretization method implemented in GPT.

 
TUPD006 3D PIC Computation of a Transversal Tune Shift caused by an Electron Cloud in a Positron Storage Ring 1928
 
  • A. Markoviḱ, G. Pöplau, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock
 
 

The electron cloud, which is initially presumed as a homogeneous distribution of static electrons, changes its transverse centroid position very fast during the passage of even a single bunch. This is due to the strong focusing transverse field of the highly relativistic positron bunch. As the density of the electrons near the beam axis grows, its impact on the beam becomes stronger. The interaction of the electron cloud with the bunch results with the shift of the betatron tune of the coherent dipole motion of the beam. In this paper we simulated the dipole tune shift of the beam interacting with the electron cloud by taking also in to account the own space-charge forces of the electrons which strongly affect the motion of the electrons during the passage of the bunch. We computed the tune shift for different transverse size and density of the electron cloud.

 
WEPEC008 HOM Spectrum and Q-factor Estimations of the High-Beta CERN-SPL-Cavities 2905
 
  • H.-W. Glock, T. Galek, G. Pöplau, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock
 
 

Beam energy deposited in Higher-Order-Modes may affect both beam stability and cryo power requirements of the planned CERN Superconducting Proton Linac SPL. We report on numerical studies of the high-beta cavity type, analyzing it's HOM spectrum. The most dangerous modes are identified and different possibilities of appropriate damping are discussed.

 
WEPEC052 Higher Order Modes in Third Harmonic Cavities for XFEL/FLASH 3007
 
  • I.R.R. Shinton, R.M. Jones, N. Juntong
    UMAN, Manchester
  • N. Baboi
    DESY, Hamburg
  • N. Eddy, T.N. Khabiboulline
    Fermilab, Batavia
  • T. Flisgen, H.-W. Glock, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock
 
 

We analyse the higher order modes in the 3.9GHz bunch shaping cavities recently installed in the XFEL/FLASH facility at DESY. We report on recent experimental results on the frequency spectrum, both beam and probe based. These are compared to those predicted by finite element computer codes, globalised scattering matrix calculations and a two-band circuit model. This study is focused on the dipole component of the multiband expansion of the wakefield.