A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Trisorio, A.

Paper Title Page
TUPE042 Results of the PSI Diode-RF Gun Test Stand Operation 2233
 
  • F. Le Pimpec, B. Beutner, H.-H. Braun, R. Ganter, C.H. Gough, C.P. Hauri, R. Ischebeck, S. Ivkovic, K.B. Li, M. Paraliev, M. Pedrozzi, T. Schietinger, B. Steffen, A. Trisorio
    PSI, Villigen
 
 

In the framework of the SwissFEL project, an alternative electron source to an RF photo-gun was investigated. It consists of a high voltage (up to 500 kV), high gradient pulsed diode system followed by single stage RF acceleration at 1.5 GHz. The electrons are produced from photo-cathodes or from field emitter arrays. The final goal of this accelerator is to produce a 200 pC electron beam with a projected normalized emittance below 0.4 mm.mrad and a bunch length of less than 10 ps. We present comparisons between beam dynamic simulations and measurements, as well as thermal emittance and quantum efficiency (QE) measurements obtained by producing photo-electrons from various metal cathodes.

 
WEPD052 Wavelength-tunable UV Laser for Electron Beam Generation with Low Intrinsic Emittance 3213
 
  • C.P. Hauri, B. Beutner, H.-H. Braun, R. Ganter, C.H. Gough, R. Ischebeck, F. Le Pimpec, M. Paraliev, M. Pedrozzi, C. Ruchert, T. Schietinger, B. Steffen, A. Trisorio, C. Vicario
    PSI, Villigen PSI
 
 

In the framework of the SwissFEL activities at PSI we developed a powerful UV laser system delivering wavelength-tunable pulses at a central wavelength varying from 260 to 283 nm. The laser system based on a ultra-stable frequency-trippled Ti:sapphire amplifier delivers mJ pulse energy within a duration of 1-10 ps with 1.5 nm spectral width. Temporal flattop pulses are achieved by direct UV shaping with a UV Dazzler and a prism-based stretcher. The system is used to explore thermal emittance and quantum efficiency dependence on photon energy from metallic photo-cathode (Cu and Mo). With pepperpot techniques we have measured the predicted theoretical limit for thermal emittance (0.4 mm.mrad / mm rms laser spot size at 283 nm and 0.6 mm.mrad / mm at 263 nm) for metallic photocathodes.