A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tongu, H.

Paper Title Page
MOPEB013 LEBT with Hybrid Magnets in a Proton Linac for Compact Neutron Source 304
 
  • S. Ushijima, H. Fujisawa, M. Ichikawa, Y. Iwashita, H. Tongu, M. Yamada
    Kyoto ICR, Uji, Kyoto
 
 

A compact neutron source using Li(p,n) or Be(p,n) reaction is proposed. The proton linac consists of ECR ion source, LEBT(Low Energy Beam Transport), RFQ linac and post accelerator. We assume that energy of the proton beam is 3MeV and its peak current is 40 mA operated at the repetition rate is 25Hz with the pulse width of 1ms. The beam from the ion source should be matched to the RFQ, where solenoid coils can handle the large current beam in this LEBT section. To reduce energy consumption in LEBT we're trying to design the Hybrid Electromagnet that consists of solenoid coils and permanent magnets. We use PANDIRA, TRACE-2D, and PBGUNS computer codes in order to simulate the magnetic field and the beam transport through LEBT. In this paper the design of this magnet and the result of its beam matching based on simulation will be presented.

 
MOPEA013 Laser-driven Proton Accelerator for Medical Application 88
 
  • M. Nishiuchi, P.R. Bolton, T. Hori, K. Kondo, A.S. Pirozhkov, A. Sagisaka, H. Sakaki, A. Yogo
    JAEA, Ibaraki-ken
  • Y. Iseki, T. Yoshiyuki
    Toshiba, Tokyo
  • S. Kanazawa, H. Kiriyama, M. Mori, K. Ogura, S. Orimo
    JAEA/Kansai, Kyoto
  • A. Noda, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Shirai
    NIRS, Chiba-shi
 
 

The interaction between the high intensity laser and the solid target produces a strong electrostatic proton acceleration field (1 TV/m) with extraordinary small size, contributing to downsizing of the particle accelerator. The proton beam exhibits significant features. having very small source size(~10 um), short pulse duration (~ps) and very low transverse emittance. However it is a diverging beam (half angle of ~10 deg) with wide energy spread of ~100 %. Because of these peculiar characteristics the proton beam attracts many fields for applications including medical applications. To preserve these peculiar characteristics, which are not possessed by those beams from the conventional accelerators, towards the irradiation points, we need to establish a peculiar beam transport line. As the first step, here we report the demonstration of the proto-type laser-driven proton medical accelerator beam line in which we combine the laser-driven proton source with the beam transport technique already established in the conventional accelerator for the purpose of comparison between the data and the particle transport simulation code, PARMILA*.


*Harunori Takeda, 2005, Parmila LANL (LA-UR-98-4478).

 
MOPEB067 The Novel Method of Focusing-SANS with Rotating Magnetic Sextupole Lens and Very Cold Neutrons 427
 
  • M. Yamada, M. Ichikawa, Y. Iwashita, T. Kanaya, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • K.H. Andersen, P.W. Geltenbort, B. Guerard, G. Manzin
    ILL, Grenoble
  • M. Bleuel
    RID, Delft
  • J.M. Carpenter, L. Jyotsana
    ANL, Argonne
  • M. Hino, M. Kitaguchi
    KURRI, Osaka
  • K. Hirota
    RIKEN, Wako, Saitama
  • S.J. Kennedy
    ANSTO, Menai
  • K. Mishima, H.M. Shimizu, N.L. Yamada
    KEK, Tsukuba
 
 

We have developed a motorized magnetic lens for focusing of pulsed white neutron beams. The lens is composed of two concentric permanent magnet arrays, in sextupole geometry, with bore of 15 mm and magnet length of 66 mm. The inner magnet array is stationary, while the outer array is rotated (the frequency of the modulation of magnetic field inside the bore ν ≤ 25Hz), providing a sextupole magnetic field gradient range of 1.5x104T/m2 ≤ g' ≤ 5.9x104T/m2. By synchronization of a pulsed neutron beam with the sinusoidal modulation of the magnetic field in the lens, the beam is focused, without significant chromatic aberration, over a wide neutron wavelength band. We have constructed a focusing-SANS (Small Angle Neutron Scattering) test bed on the PF2-VCN (Very Cold Neutron) beam line at the Institut Laue-Langevin in Grenoble. The beam image size matched the source size (≈ 3mm) over of wavelength range of 30Å ≤ λ ≤ 48Å with focal length of ~ 2.3 m. Further, we have demonstrated the performance of this device for high resolution time-of-flight (tof) SANS for a selection of polymeric & biological samples, in a compact geometry of just 5 m.

 
MOPEC086 Development of Very Small ECR H+ Ion Source 663
 
  • M. Ichikawa, H. Fujisawa, Y. Iwashita, H. Tongu, S. Ushijima, M. Yamada
    Kyoto ICR, Uji, Kyoto
 
 

We aim to develop a small and high intensity proton source for a compact accelerator based neutron source. Because this proton source shall be located close to RFQ for simplification, ratio of H+ to molecular ions such as H2+ or H3+ must be large. Therefore, we selected an ECR ion source with permanent magnets as small and high intensity ion source. ECR ion sources can provide high H+ ratio because of their high plasma temperature. Using permanent magnets makes the ion source small and running cost low. Because there is no hot cathode, longer MTBF is expected. Usually, gas is fed into ion sources continuously, even if ion sources run in pulse operation mode. But, continuous gas flow doesn't make vacuum in good level. So, we decided to install pulse gas valve directly to the plasma chamber. Feeding the gas only when the ion source is in operation reduces the gas load to the evacuation system and the vacuum level can be kept high. Up to now, we developed the first and second model of the ion source. And the research is being conducted using the second model. Recent experimental results will be presented.

 
MOPD071 Horizontal-Vertical Coupling for Three Dimensional Laser Cooling* 855
 
  • T. Hiromasa, M. Nakao, A. Noda, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • K. Jimbo
    Kyoto IAE, Kyoto
  • T. Shirai
    NIRS, Chiba-shi
 
 

In order to achieve three dimensional crystal beam, laser cooling forces are required not only in the longitudinal direction, but also in the transverse directions. With the resonance coupling method*, transverse temperature is transmitted into longitudinal direction, and we have already demonstrated horizontal laser cooling experimentally **. In the present paper, we describe an approach to extend this result to three dimensional cooling. The vertical cooling requires that the horizontal oscillation couples with the vertical oscillation. For achieving horizontal-vertical coupling, a solenoid in electron beam cooling apparatus is utilized with an experiment (Qx=2.07,Qy=1.07). For various solenoidal magnetic fields from 0 to 40Gauss, horizontal and vertical betatron tunes are measured by beam transfer function. For a certain region of the solenoidal magnetic field, these tunes are mixed up each other. By optimization of such a coupling, we aim to proceed to three dimensional laser cooling.


* H. Okamoto Phys. Rev. E 50, 4982 (1994)
** H. Souda et.al.,contribution to this conference

 
MOPD072 Optical Measurement of Transverse Laser Cooling with Synchro-Betatron Coupling* 858
 
  • M. Nakao, T. Hiromasa, A. Noda, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • M. Grieser
    MPI-K, Heidelberg
  • K. Jimbo
    Kyoto IAE, Kyoto
  • H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • T. Shirai
    NIRS, Chiba-shi
  • A.V. Smirnov
    JINR, Dubna, Moscow Region
 
 

Experiments of transverse laser cooling for 24Mg+ beam have been performed at the small ion storage and cooler ring, S-LSR. It is predicted that the longitudinal cooling force is transmitted to the horizontal direction with synchro-betatron coupling at the resonant condition*. The laser system consists of a 532nm pumping laser, a ring dye laser with variable wavelength around 560nm, and a frequency doubler. The horizontal beam size and the longitudinal momentum spread were optically measured by a CCD and a PAT (Post Acceleration Tube) respectively**, ***. The CCD measures the beam size by observing spontaneous emission from the beam and records in sequence of 100ms time windows the development of the beam profile. The time variation of the beam size after beam injection indicates the transverse cooling time. The initial horizontal beam size, which was about 1mm, was decreased by 0.13mm in 1.5s. The longitudinal momentum spread measured by PAT is increased at the resonant condition. This suggests transverse temperature was transferred to longitudinal direction by synchro-betatron coupling. Both measurements denote the horizontal cooling occurred only in the resonant condition ****.


* H. Okamoto, Phys. Rev. {E50}, 4982 (1994)
** M. Tanabe et. al, Appl. Phys. Express 1 (2008) 028001
*** T. Ishikawa Master Thesis, Kyoto Univ.(2008)
**** H. Souda et. al., contribution to IPAC10.

 
MOPD073 Transverse Laser Cooling by Synchro-betatron Coupling 861
 
  • H. Souda, T. Hiromasa, M. Nakao, A. Noda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • M. Grieser
    MPI-K, Heidelberg
  • K. Jimbo
    Kyoto IAE, Kyoto
  • H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • T. Shirai
    NIRS, Chiba-shi
  • A.V. Smirnov
    JINR, Dubna, Moscow Region
 
 

Transverse laser cooling with the use of a synchro-betatron coupling is experimentally demonstrated at the ion storage/cooler ring S-LSR. Bunched 40keV 24Mg+ beams are cooled by a co-propagating laser with a wavelength of 280nm. Synchrotron oscillation and horizontal betatron oscillation are coupled by an RF drifttube at a finite dispersive section (D = 1.1m) in order to transmit longitudinal cooling force to the horizontal degree of freedom*. Time evolution of horizontal beam size during laser cooling was measured by a CCD camera**. Horizontal beam sizes were reduced by 0.13mm within 1.5s after injection when the tune values satisfy a difference resonance condition, νs - νh = integer, at the operating tunes of (νh, νv, νs)=(2.067, 1.104, 0.067) and (2.058, 1.101, 0.058). Without resonance condition, the size reduction was negligibly small. The momentum spread was 1.7x10-4 on the resonance otherwise 1.2x10-4. These results show that the horizontal heats are transferred to the longitudinal direction through the synchro-betatron coupling with the resonance condition and are cooled down by a usual longitudinal bunched beam laser cooling.


* H. Okamoto, Phys. Rev. E 50, 4982 (1994).
** M. Nakao et. al., contribution to this conference.

 
MOPD074 Beam Lifetime with the Vacuum System in S-LSR 864
 
  • H. Tongu, T. Hiromasa, M. Nakao, A. Noda, H. Souda
    Kyoto ICR, Uji, Kyoto
  • T. Shirai
    NIRS, Chiba-shi
 
 

S-LSR is a compact ion storage and cooler ring to inject beam of the 7MeV proton and the 40MeV Mg+. The average vacuum pressure measured by the vacuum gauges without beam was achieved up to about 4x10-9 Pa in 2007. Many experiments have been carried out using the proton and Mg beam, for example the one-dimensional beam ordering of protons utilizing the electron cooler, the extraction tests of the short bunched beam and the laser cooling for the Mg beam had been performed. The beam lifetime can be estimated with the vacuum pressure or the loss-rate of the beam energy. The values of the estimated lifetime are nearly equal to the measured lifetime values. The present status of the proton beam lifetime and the vacuum pressure is reported.

 
WEPEC035 Multipoint T-map System for Vertical Test of the Superconducting Accelerator Cavities 2971
 
  • H. Tongu, H. Fujisawa, Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • H. Hayano, K. Watanabe, Y. Yamamoto
    KEK, Ibaraki
 
 

The vertical test is a performance trial done by cooling the superconducting cavity, and injecting the high-frequency electricity. The temperature mapping (T-map) system is developed for the vertical test. T-map system can find heat sources that may be caused by defects on inner surfaces of superconducting cavities. The purpose of our studies on T-map is to realize a high spacial resolution and easy installation of the sensors. CMOS analog multiplexers in the cryogenic temperature can manage about thousand sensors per 9 cells to send their signals with fewer lines. Inspection efficiencies to raise the production yield of the cavities would be improved by using such a high resolution T-map system. The preliminary test of the cryogenic temperature by the T-map system is reported.

 
WEPE017 Beam Test Plan of Permanent Magnet Quadrupole Lens at ATF2 3380
 
  • Y. Iwashita, H. Fujisawa, M. Ichikawa, H. Tongu, S. Ushijima
    Kyoto ICR, Uji, Kyoto
  • M. Masuzawa, T. Tauchi
    KEK, Ibaraki
 
 

A prototype of a permanent magnet quadrupole lens for ILC final focus doublet is fabricated. In order to demonstrate the feasibility, it will be tested in a real beam line. Such practical experiences include its shipping, storage, handling, installation, alignment technique, and so on. Because permanent magnets cannot be switched off in contradistinction to electromagnets, they should be evacuated from beam lines when no interference is desired and the process should be quick with enough reproducibility. The magnetic center and strength stability including reproducibility are also important issues during the beam test. In order to reduce interferences with current ongoing testing items at ATF2, the magnet will be installed at a further upstream position of the ATF2 beam line. The installation and test plan will be described.