A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tang, L.L.

Paper Title Page
MOPE030 Bunch-by-bunch Beam Current Monitor for HLS 1035
 
  • T.J. Ma, C. Li, W.B. Li, P. Lu, B. Sun, L.L. Tang, Y.L. Yang
    USTC/NSRL, Hefei, Anhui
 
 

A new beam current monitor (BCM) has been implemented on Hefei Light Source (HLS) recently. It has been used for bunch-by-bunch beam current measurement, which is useful for filling control and longitudinal feedback, etc. The BCM consists of three parts: the front-end circuit, a high sampling rate oscilloscope for beam current signal acquisition and the data processing system. The signals from the beam position monitor of the storage ring are manipulated by the front-end circuit first, then sampled by the Agilent MSO7104 oscilloscope and transported into the control computer for data processing. The sampling rate of the oscilloscope is up to 4GHz and the trigger rate is 4.533 MHz. The data processing program is supported by the LabVIEW. The measurement of beam current in multi-bunch operation mode is described. Some important results are summarized.

 
MOPE032 Application of the Gige Vision Digital Camera for Beam Diagnostics in HLS 1041
 
  • L.L. Tang, L.M. Gu, P. Lu, T.J. Ma, B. Sun, J.G. Wang, X.H. Wang
    USTC/NSRL, Hefei, Anhui
 
 

GigE Vision (Gigabit Ethernet vision standard) is a new interface standard for the latest vision of cameras with higher performance compared to analogue vision standard and other digital vision standard. In recent years, the market of industrial vision components is evolving towards GigE Vision. This paper presents applications of digital camera comply with GigE Vision standard for the measurement of beam profile and emittance at the storage ring of HLS (Hefei Light Source). These cameras provide low distortion for image transmission over long distance with high image rate. Using the image of beam profile transmitted by GigE Vision digital camera, we calculated the horizontal and vertical center positions, and then we calibrated these center positions by BPM (Beam Position Monitor) system. According to the result of calibration and the pixel size of CCD sensor, transverse sizes of beam profile were calculated, further more the transverse emittance and coupling factor were calculated as well.