A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tamasaku, K.

Paper Title Page
MOPE004 Development and Construction Status of the Beam Diagnostic System for XFEL/SPring-8 957
 
  • S. Matsubara, A. Higashiya, H. Maesaka, T. Ohshima, Y. Otake, T. Shintake, H. Tanaka, K. Togawa, M. Yabashi
    RIKEN/SPring-8, Hyogo
  • H. Ego, S. Inoue, K. Tamasaku, T. Togashi, H. Tomizawa, K. Yanagida
    JASRI/SPring-8, Hyogo-ken
 
 

We report the design, performance, and installation of the beam diagnostic system of XFEL/SPring-8. The electron beam bunches of an XFEL accelerator are compressed from 1 ns to 30 fs by bunch compressors without emittance growth and peak-current fluctuation which directly cause SASE fluctuation. To maintain the stable bunch compression process, the accelerator requires rf caivty beam position monitors (BPM) with 100 nm resolution, OTR screen monitors (SCM) with a few micro-meter resolution, fast beam current monitors (CT) and temporal structure measurement systems with resolution under picosecond. The performance of the developed monitor instruments, such as the BPM, the SCM, and the CT, was tested at the SCSS test accelerator and satisfied with the requirements. To measure the temporal structure of the electron bunch, three type measurement systems, which are a streak camera, an EO sampling measurement, and a transverse deflecting cavity with a resolution of few-tens femtosecond, are being prepared. The streak camera and EO sampling shows the resolution of sub-picosecond. The installation of these beam diagnostic systems is going on smoothly.

 
TUPE024 Construction of a Timing and Low-level RF System for XFEL/SPring-8 2191
 
  • N. Hosoda, H. Maesaka, S. Matsubara, T. Ohshima, Y. Otake, K. Tamasaku
    RIKEN/SPring-8, Hyogo
  • M. Musha
    University of electro-communications, Tokyo
 
 

The intensity of SASE generated by undulators is sensitive to the peak intensity fluctuation of an electron bunch. The bunch is formed by velocity bunching in an injector and magnetic bunching in bunch compressors (BC). The peak intensity is sensitive to rf phase and amplitude of off-crest acceleration at injector cavities and 5712 MHz cavities before the BCs. Thus, demanded stabilities of the rf phase and amplitude for stable SASE generation are very tight. These are 0.6 degree (p-p) and 0.06 % (p-p) at the 5712 MHz cavities, respectively. We are constructing a low-level rf (LLRF) system comprising a master oscillator, an optical rf signal transmission system, and a digital rf control system using IQ modulator/demodulator to drive klystrons. To realize the demands, much attention was paid to temperature stabilization for the system. A water-cooled 19-inch rack and a water-cooled cable ducts are employed for almost all part of the system. Temperature stability of the rack was 0.4 K (p-p) even though outside was 4 K (p-p). The phase and amplitude stabilities of the LLRF modules were measured to be 0.30 degree (p-p) and 0.56 % (p-p). These stabilities are sufficient for our demands.