A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sugimoto, H.

Paper Title Page
TUPEA007 S-POD Experiments of Space-Charge-Dominated Beam Resonances 1339
 
  • H. Okamoto, K. Ito, H. Sugimoto
    HU/AdSM, Higashi-Hiroshima
  • H. Higaki
    Hiroshima University, Higashi-Hiroshima
  • S.M. Lund
    LLNL, Livermore, California
 
 

S-POD (Simulator for Particle Orbit Dynamics) is a tabletop, non-neutral plasma trap system developed at Hiroshima University for fundamental beam physics studies. The main components of S-POD include a compact radio-frequency quadrupole trap, various AC and DC power supplies, a vacuum system, a laser cooler, several diagnostics, and a comprehensive computer control system. A large number of ions, produced through the electron bombardment process, are captured and confined in the RFQ trap to emulate collective phenomena in space-charge-dominated beams traveling in periodic linear focusing lattices. This unique experiment is based on the isomorphism between a one-component plasma in the laboratory frame and a charged-particle beam in the center-of-mass frame. We here employ S-POD to explore the coherent betatron resonance instability which is an important issue in modern high-power accelerators. Ion loss behaviors and transverse plasma profiles are measured under various conditions to identify the parameter-dependence of resonance stopbands. Experimental observations are compared with PIC simulation results obtained with the WARP code.

 
THPE066 Simulation Study on Coherent Resonant Instability of Non-neutral Plasmas Confined in a Linear Paul Trap 4668
 
  • H. Sugimoto, K. Ito, H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • S.M. Lund
    LLNL, Livermore, California
 
 

Resonant instabilities of ion plasmas confined in a linear Paul trap are studied using the particle-in-cell code WARP. Transverse two-dimensional model is employed to save computing time and perform systematic investigations. Both applied and self-field forces are calculated with a boundary condition assuming a quadrupole electrode structure. A large number of simulations were carried out with rms matched plasmas to clarify characteristics of the instability caused by linear and nonlinear coherent resonances. Stop band distributions produced by the simulation runs are consistent with theoretical prediction. These results are also compared to experimental results obtained from Hiroshima University Paul trap that is developed to study beam dynamics. It is shown that the stop band distributions of both numerical and experimental results are good agreement each other. We confirmed from these results that coherent resonances are excited when one of the coherent tunes is close to a half integer.