A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Saito, Y.

Paper Title Page
MOPD044 Fabrication of the New RFQ for the J-PARC Linac 783
 
  • T. Morishita, K. Hasegawa, Y. Kondo
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • H. Baba, Y. Hori, H. Kawamata, H. Matsumoto, F. Naito, Y. Saito, M. Yoshioka
    KEK, Ibaraki
 
 

The J-PARC RFQ (length 3.1m, 4-vane type, 324 MHz) accelerates a negative hydrogen beam from 0.05MeV to 3MeV toward the following DTL. As the trip rates of the practically using RFQ increased in autumn 2008, we started the preparation of a new RFQ as a backup machine. The beam dynamics design of the new RFQ is the same as the current cavity, however, the engineering and RF designs are changed. The processes of the vane machining and the surface treatments have been carefully considered to reduce the discharge problem. The vacuum brazing technique has been chosen for vane integration. In this report, the detailed design will be described with the progress of the fabrication of the new RFQ.

 
THPEB021 Improvements of the Charge Exchange System at the 3GeV RCS in J-PARC 3930
 
  • M. Yoshimoto, M. Kawase, M. Kinsho, O. Takeda, Y. Yamazaki
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Z. Kabeya
    MHI, Nagoya
  • Y. Saito
    KEK, Ibaraki
 
 

At the 3GeV RCS (Rapid Cycling Synchrotron) in J-PARC (Japan Proton Accelerator Research Complex), the scheme of H- charge exchange injection using stripping foils is adopted. The charge exchange system is composed of three stripping foil devices. The first stripping foil device, which converts the H- beam from the 181MeV LINAC into the H+ beam, can replace the broken foil with new one in vacuum remotely and automatically. In September 2007, mechanical trouble with the first stripping foil device had occurred just before the RCS beam commissioning was started. The magnetic coupling of the transfer rod had been decoupled and the transfer rod had been broken which was caught in the vacuum gate valve. We studied the trouble cause, re-examined the structural design and the selection for the material, and then verified the specification from endurance tests with sample pieces. Then the improved device was installed in the ring in September 2008. In this presentation, we report the mechanical trouble and that countermeasure, including the improvements of the charge exchange system.