A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Roux, R.

Paper Title Page
MOPEA048 Highlights of Accelerator Activities in France on behalf of the Accelerator Division of the French Physics Society 181
 
  • J.-L. Revol
    ESRF, Grenoble
  • P. Ausset
    IPN, Orsay
  • M.A. Baylac
    LPSC, Grenoble
  • F. Chautard
    GANIL, Caen
  • B. Cros
    Laboratoire de Physique des Gaz et des Plasmas, Universite Paris-Sud, Orsay
  • J.-C. Denard
    SOLEIL, Gif-sur-Yvette
  • F. Kircher, J.-L. Lemaire
    CEA, Bruyères-le-Chtâtel
  • P. Maccioni
    SDMS, Saint Romans
  • R. Roux
    LAL, Orsay
 
 

The French Physics Society is an association the purpose of which is to promote physics and physicists. In this context, the accelerator physics and associated technology division is in charge of the promotion of accelerator activities in France. This paper presents the missions and actions of the division, highlighting those concerning young scientists. A brief presentation of the laboratories, institutes or facilities who are the main actors in the field will then be given. Significant projects which are underway or planned will be described, including medical applications. The major contribution of France to international projects will then be introduced. Finally the cultural and technical relations between industry and laboratories will be discussed.

 
TUPEB057 Positron Production and Capture based on Low Energy Electrons for SuperB 1650
 
  • F. Poirier, I. Chaikovska, O. Dadoun, P. Lepercq, R. Roux, A. Variola
    LAL, Orsay
  • R. Boni, S. Guiducci, M.A. Preger, P. Raimondi
    INFN/LNF, Frascati (Roma)
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
 
 

Providing a high quality and sufficient high current positron beam for the ultra high luminosity B-factory SuperB is a major goal. In this paper a proposition for positrons production and capture scheme based on low energy electrons up to1 GeV is presented. For this technique, several types of flux concentrator used to capture the positrons are being studied. The following accelerating section bringing the positrons up to 280 MeV and the total yield for L-band and S-band type accelerators are given. Also the result of the benchmark between ASTRA and a LAL code based on Geant4 toolkit simulation is discussed.