A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Reich-Sprenger, H.

Paper Title Page
MOPD002 Acceleration of Intermediate Charge State Heavy Ions in SIS18 669
 
  • P.J. Spiller, H. Eickhoff, H. Kollmus, P. Puppel, H. Reich-Sprenger
    GSI, Darmstadt
  • L.H.J. Bozyk
    FIAS, Frankfurt am Main
 
 

After partially completing the upgrade program of SIS18, the number of intermediate charge state heavy ions accelerated to the FAIR booster energy of 200 MeV/u, could be increased by a factor of 50. Meanwhile, more than 1010 Uranium ions with charge state 27+ have been accelerated with moderate beam loss by ionization and reasonably stable residual gas pressure conditions. The specific challenge for the SIS18 booster operation is the high cross section for ionization due to the low charge state in combination with gas desorption processes and the dynamic vacuum pressure. Especially for this operation mode which is requied to match the intensity requirements for FAIR, an extended upgrade program of SIS18 is presently ongoing and partially completed. The achieved progress in minimizing the ionization beam loss underlines that the chosen technical strategies described in this report are appropriate.

 
MOPD003 Engineering Status of SIS100 672
 
  • P.J. Spiller, U. Blell, L.H.J. Bozyk, H. Eickhoff, E.S. Fischer, E. Floch, F. Hagenbuck, M. Kauschke, A. Krämer, J.P. Meier, C. Mühle, N. Pyka, S. Ratschow, H. Reich-Sprenger, P. Schnitzer, J. Stadlmann, St. Wilfert
    GSI, Darmstadt
 
 

The engineering design, including the specifications for the accelerator components of the FAIR synchrotron SIS100 has been summarized in the Technical Design Report. The final stage of technical planning shall approach production readiness for the major technical systems in 2010. Significant progress has been achieved in the design of the cryomagnetic system with its main dipole and quadrupole modules, enabling the production of the first pre-series dipole magnet. Slight modifications of the lattice have been implemented to equalize most of the cryostat interconnections, leading to a simplified design and installation effort, and a reduced variety of components and spar parts. The new parallel tunnel allows optimal short interconnections between the supply units and power converters and the accelerator components. The status of the engineering design of SIS100 will be reported.