A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ratner, D.F.

Paper Title Page
TUPE066 Femtosecond Operation of the LCLS for User Experiments 2287
 
  • J.C. Frisch, C. Bostedt, J.D. Bozek, A. Brachmann, R.N. Coffee, F.-J. Decker, Y.T. Ding, D. Dowell, P. Emma, A. Gilevich, G. Haller, G.R. Hays, P. Hering, B.L. Hill, Z. Huang, R.H. Iverson, E.P. Kanter, B. Kraessig, H. Loos, A. Miahnahri, H.-D. Nuhn, A. Perazzo, M. Petree, D.F. Ratner, T.J. Smith, S.H. Southworth, J.L. Turner, J.J. Welch, W.E. White, J. Wu, L. Young
    SLAC, Menlo Park, California
  • R.B. Wilcox
    LBNL, Berkeley, California
 
 

In addition to its normal operation at 250pC, the LCLS has operated with 20pC bunches delivering X-ray beams to users with energies between 800eV and 2 keV and with bunch lengths below 10 fs FWHM. A bunch arrival time monitor and timing transmission system provide users with sub 100 fs synchronization between a laser and the X-rays for pump / probe experiments. We describe the performance and operational experience of the LCLS for short bunch experiments.

 
TUPE071 Identifying Longitudinal Jitter Sources in the LCLS Linac 2296
 
  • F.-J. Decker, R. Akre, A. Brachmann, J. Craft, Y.T. Ding, D. Dowell, P. Emma, J.C. Frisch, Z. Huang, R.H. Iverson, A. Krasnykh, H. Loos, H.-D. Nuhn, D.F. Ratner, T.J. Smith, J.L. Turner, J.J. Welch, W.E. White, J. Wu
    SLAC, Menlo Park, California
 
 

The Linac Coherent Light Source (LCLS) at SLAC is an x-ray Free Electron Laser with wavelengths of 0.15 nm to 1.5 nm. The electron beam stability is important for good lasing. While the transverse jitter of the beam is about 10-20% of the rms beam sizes, the jitter in the longitudinal phase space is a multiple of the energy spread and bunch length. At the lower energy of 4.3 GeV (corresponding to the longest wavelength of 1.5 nm) the relative energy jitter can be 0.125%, while the rms energy spread is with 0.025% five times smaller. An even bigger ratio exists for the arrival time jitter of 50 fs and the bunch duration of about 5 fs (rms) in the low charge (20 pC) operating mode. Although the impact to the experiments is reduced by providing pulse-by-pulse data of the measured energy and arrival time, it would be nice to understand and mitigate the root causes of this jitter. The thyratron of the high power supply of the RF klystrons is one of the main contributors. Another suspect is the multi-pacting in the RF loads. Phase measurements down to 0.01 degree (equals 10 fs) along the RF pulse were achieved, giving hints to the impact of the different sources.