A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Raguin, J.-Y.

Paper Title Page
TUPD032 Single Bunch Wakefields in the CERN-PSI-ELETTRA X-band Linear Accelerator 1997
 
  • M.M. El-Ashmawy, G. D'Auria
    ELETTRA, Basovizza
  • M.M. Dehler, J.-Y. Raguin
    PSI, Villigen
  • G. Riddone, R. Zennaro
    CERN, Geneva
 
 

FERMI@ELETTRA and PSI-XFEL are 4th Generation Light Sources that require high quality electron beam at the entrance of the undulator chains. In this context, a specially developed X-band structure with integrated alignment monitors will be used to mitigate the nonlinearities in the longitudinal phase space due to the second order RF time curvature and the second order momentum compaction term of chicane compressor. The knowledge of the transverse and longitudinal short range wakefields in the X-band structure is essential to evaluate the beam quality in terms of longitudinal energy spread and transverse kick spread. We have used the ABCI code to numerically evaluate the transverse and longitudinal wake potentials for short bunches in this structure.

 
THPEA042 Engineering Design of a Multipurpose X-band Accelerating Structure 3771
 
  • D. Gudkov, G. Riddone, A. Samoshkin, R. Zennaro
    CERN, Geneva
  • M.M. Dehler, J.-Y. Raguin
    PSI, Villigen
 
 

PSI-XFEL and Elettra-Fermi-require a X-band RF structure. As CLIC is pursuing a program for producing and testing x-band high-gradient RF structures, a collaboration between PSI, Elettra and CERN, has been established to build a multipurpose X-band accelerating structure. This paper focuses on its engineering design which is based on disk-shaped cells bonded together by different technologies (diffusion bonding, vacuum brazing and laser beam welding). The accelerating structure consists of 2 coupler subassemblies and 73 disks, and include wake field monitor waveguides. The engineering study also comprises the external cooling system, consisting of two parallel cooling circuits, and the tuning system, allowing for the fine-tuning by means of cell deformations. The engineering solution for installation and sealing of wake field monitor feed-through devices inside the accelerating structure RF-cavity is also proposed.