A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Quatraro, D.

Paper Title Page
TUPD013 Assessment of CERN PSB Performance with Linac4 by Simulations of Beams with Strong Direct Space Charge Effects 1949
 
  • C. Carli, M. Chanel, B. Goddard, M. Martini, D. Quatraro, M. Scholz
    CERN, Geneva
  • M. Aiba
    PSI, Villigen
 
 

The performance of the CERN PS Booster (PSB) synchrotron is believed to be limited mainly by direct space charge effects at low energy. The main motivation to construct Linac4 is to raise the PSB injection energy to mitigate direct space charge effects. At present, simulation of the injection and the ow energy part of the cycle aim at defining Investigations on the influence of parameters of the injected beam on the performance of the PSB are described.

 
TUPD046 Effects of Direct Space Charge on the Transverse Mode Coupling Instability 2027
 
  • D. Quatraro, G. Rumolo
    CERN, Geneva
 
 

The effects of direct space charge forces on the Transverse Mode Coupling Instability (TMCI) are studied using numerical techniques. We have implemented a third order symplectic integrator for the equation of motion, taking into account non linear space charge forces coming from a Gaussian shaped bunch. We performed numerical simulation for the Super Proton Synchrotron (SPS) bunch at 26 GeV of kinetic energy, using either resistive wall or broad band transverse wake fields. In both cases the result of applying direct space charge, leads to an intensity threshold increase by almost 20% before the TMCI appears. Far above the TMCI intensity threshold, the growth rate is almost 10% higher if no space charge forces are applied.

 
TUPD047 Head Tail Instability Observations and Studies at the Proton Synchrotron Booster 2030
 
  • D. Quatraro, A. Findlay, B. Mikulec, G. Rumolo
    CERN, Geneva
 
 

Since many years the Proton Synchrotron Booster (PSB) high intensity beams have shown head-tail instabilities in all of the four rings at around 100 ms after the injection. In this paper we present the latest observations together with the evaluation of the instability rise time and its dependence on the bunch intensity. The acquired head-tail modes and the growth rates are compared with HEADTAIL numerical simulations, which together with the Sacherer theory points at the resistive wall impedance as a possible source of the instability.