A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Park, S.

Paper Title Page
WEPEA075 Booster Synchrotron RF System Upgrade for SPEAR3 2660
 
  • S. Park, W.J. Corbett
    SLAC, Menlo Park, California
 
 

The recent progress at the SPEAR3 were the increase in stored current from 100 mA to 200 mA maximum and the top-off injection to allow beamlines to stay open during injection. Presently the booster injects 3.0 GeV beam to SPEAR3 three times a day. The stored beam decays to about 150 mA between the injections. The growing user demands are to increase stored current to the design value of 500 mA, and to maintain it at a constant value within a percent or so. To achieve this goal the booster must inject once every few minutes. For improved injection efficiency, all RF systems at the linac, booster and SPEAR3 need to be phase-locked. These requirements entail a booster RF system upgrade to a scaled down version of the SPEAR3 RF system running at 476.3 MHz with a 1.2 MW cw output power capability. The present booster RF system is basically a copy of the SPEAR2 RF system operating at 358.5 MHz with 80 kW peak power to a 5-cell RF cavity for 1.2 MV gap voltage. We will analyze each subsystem option for their merits within budgetary and geometric space constraints. A substantial portion of the system will come from the decommissioned PEP-II RF stations.