A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Panagiotidis, K.G.

Paper Title Page
THPE038 Low-emittance Tuning Simulations for the ILC Damping Rings 4602
 
  • K.G. Panagiotidis, A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • M. Korostelev, K.G. Panagiotidis
    The University of Liverpool, Liverpool
 
 

One of the major challenges for the International Linear Collider (ILC) damping rings is the attainment of the 2 pm vertical emittance specification. To achieve such an ultra-low vertical emittance a highly effective diagnostics and correction system is needed. However, since both BPMs and correctors have also negative impacts on the design (cost, complexity, impedance), it is important to understand how the number and locations of both these components affect the correction. In this paper we present the results of simulations for the Technical Design Phase baseline damping rings lattice (DCO4), aimed at understanding the effectiveness of orbit, dispersion, and coupling correction for different design and operation scenarios.

 
THPE032 Calculation of Coupled Lattice Functions from Turn-by-turn Trajectory Data in Storage Rings 4587
 
  • A. Wolski, M. Korostelev, K.G. Panagiotidis
    The University of Liverpool, Liverpool
 
 

BPMs capable of high resolution turn-by-turn bunch position measurements are becoming increasingly widely used in electron storage rings. Analysis of the data from a set of such BPMs following the excitation of a coherent betatron oscillation can yield useful information for tuning the optics and improving machine performance. This approach to optics measurement has the benefits that the data collection is very fast, and analysis can be local, so that application is as easy for a large ring as for a small one. Here, we describe a technique for using turn-by-turn BPM data to determine lattice functions that describe the local coupling in a storage ring; this may be helpful, for example, for achieving low vertical emittance. We discuss the principles of the technique, give some examples, and discuss possible limitations arising from BPM gain and coupling errors.